Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 4(1): vdac154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299795

RESUMO

Background: To evaluate the potential intracranial efficacy of immunotherapy among patients with breast cancer brain metastases (BrM), we analyzed the immunohistochemical expression of programmed death-ligand 1 (PD-L1), a predictive biomarker of response to immunotherapy. Methods: In this single-center retrospective cohort study, consecutive patients with breast cancer BrM (immunotherapy naïve) who underwent surgery for BrM at Sunnybrook Health Sciences Center between July 1999 and June 2013 were identified. PD-L1 expression by immunohistochemistry (IHC) was assessed on BrM samples in triplicate; PD-L1 positive status was defined as PD-L1 expression ≥1% on tumor-infiltrating cells as a percentage of tumor area using the Ventana SP142 antibody. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2) status was determined using 2018 ASCO/CAP guidelines. Results: The median patient age at the time of BrM diagnosis was 52 (range 32-85). PD-L1 expression using the SP42 antibody was identified in 9 out of 59 (15.3%) breast cancer BrM. The frequency of PD-L1 positive BrM by subtype is as follows: TNBC (n = 3/12, 25.0%), HER2+/HR- (n = 3/14, 21.4%), HR+/HER2- (n = 2/18, 11.1%), and HER2+/HR+ (n = 1/14, 7.1%). 24-month brain-specific progression-free survival was 66.7% (95% CI 37.9%-100%) among patients with PD-L1 positive BrM versus 42% (95% CI 26.6%-67.3%) among those with PD-L1 negative BrM (log-rank P-value .142). Conclusions: One in 7 patients in our cohort had PD-L1 positive BrM; this proportion was highest (25%) among those with TNBC. Intracranial efficacy of immunotherapy warrants further study, particularly among patients with treatment-naïve metastatic TNBC, for whom extracranial efficacy has already been established.

2.
Cell Rep ; 40(13): 111420, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170831

RESUMO

Recurrence of solid tumors renders patients vulnerable to advanced, treatment-refractory disease state with mutational and oncogenic landscape distinctive from initial diagnosis. Improving outcomes for recurrent cancers requires a better understanding of cell populations that expand from the post-therapy, minimal residual disease (MRD) state. We profile barcoded tumor stem cell populations through therapy at tumor initiation, MRD, and recurrence in our therapy-adapted, patient-derived xenograft models of glioblastoma (GBM). Tumors show distinct patterns of recurrence in which clonal populations exhibit either a pre-existing fitness advantage or an equipotency fitness acquired through therapy. Characterization of the MRD state by single-cell and bulk RNA sequencing reveals a tumor-intrinsic immunomodulatory signature with prognostic significance at the transcriptomic level and in proteomic analysis of cerebrospinal fluid (CSF) collected from patients with GBM. Our results provide insight into the innate and therapy-driven dynamics of human GBM and the prognostic value of interrogating the MRD state in solid cancers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/genética , Células-Tronco Neoplásicas/patologia , Proteômica
3.
Sci Adv ; 7(50): eabi5568, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878832

RESUMO

Medulloblastoma (MB) remains a leading cause of cancer-related mortality among children. The paucity of MB samples collected at relapse has hindered the functional understanding of molecular mechanisms driving therapy failure. New models capable of accurately recapitulating tumor progression in response to conventional therapeutic interventions are urgently needed. In this study, we developed a therapy-adapted PDX MB model that has a distinct advantage of generating human MB recurrence. The comparative gene expression analysis of MB cells collected throughout therapy led to identification of genes specifically up-regulated after therapy, including one previously undescribed in the setting of brain tumors, bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4). Subsequent functional validation resulted in a markedly diminished in vitro proliferation, self-renewal, and longevity of MB cells, translating into extended survival and reduced tumor burden in vivo. Targeting endothelial nitric oxide synthase, a downstream substrate of BPIFB4, impeded growth of several patient-derived MB lines at low nanomolar concentrations.

4.
Neurooncol Adv ; 3(1): vdab144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765972

RESUMO

BACKGROUND: Glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, has been classified into three subtypes: classical, mesenchymal, and proneural. While the original classification relied on an 840 gene-set, further clarification on true GBM subtypes uses a 150-gene signature to accurately classify GBM into the three subtypes. We hypothesized whether a machine learning approach could be used to identify a smaller gene-set to accurately predict GBM subtype. METHODS: Using a supervised machine learning approach, extreme gradient boosting (XGBoost), we developed a classifier to predict the three subtypes of glioblastoma (GBM): classical, mesenchymal, and proneural. We tested the classifier on in-house GBM tissue, cell lines, and xenograft samples to predict their subtype. RESULTS: We identified the five most important genes for characterizing the three subtypes based on genes that often exhibited high Importance Scores in our XGBoost analyses. On average, this approach achieved 80.12% accuracy in predicting these three subtypes of GBM. Furthermore, we applied our five-gene classifier to successfully predict the subtype of GBM samples at our centre. CONCLUSION: Our 5-gene set classifier is the smallest classifier to date that can predict GBM subtypes with high accuracy, which could facilitate the future development of a five-gene subtype diagnostic biomarker for routine assays in GBM samples.

6.
J Neurooncol ; 143(3): 417-428, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115870

RESUMO

PURPOSE: Glioblastoma (GBM) is the most aggressive adult brain cancer, with a 15 month median survivorship attributed to the existence of treatment-refractory brain tumor initiating cells (BTICs). In order to better understand the mechanisms regulating the tumorigenic properties of this population, we studied the role of the polycomb group member BMI1 in our patient-derived GBM BTICs and its relationship with CD133, a well-established marker of BTICs. METHODS: Using gain and loss-of-function studies for Bmi1 in neural stem cells (NSCs) and patient-derived GBM BTICs respectively, we assessed in vitro self-renewal and in vivo tumor formation in these two cell populations. We further explored the BMI1 transcriptional regulatory network through RNA sequencing of different GBM BTIC populations that were knocked down for Bmi1. RESULTS: There is a differential role of BMI1 in CD133-positive cells, notably involving cell metabolism. In addition, we identified pivotal targets downstream of BMI1 in CD133+ cells such as integrin alpha 2 (ITGA2), that may contribute to regulating GBM stem cell properties. CONCLUSIONS: Our work sheds light on the association of three genes with CD133-BMI1 circuitry, their importance as downstream effectors of the BMI1 signalling pathway, and their potential as future targets for tackling GBM treatment-resistant cell populations.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 1/metabolismo , Antígeno AC133/genética , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nature ; 572(7767): 67-73, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31043743

RESUMO

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Evolução Molecular , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Transcrição Gênica , Animais , Neoplasias Cerebelares/classificação , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/metabolismo , Criança , Feminino , Feto/citologia , Glioma/classificação , Glioma/genética , Glioma/patologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Tempo , Transcriptoma/genética
8.
Cancer Res ; 78(17): 5023-5037, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945963

RESUMO

Glioblastoma (GBM) carries a dismal prognosis and inevitably relapses despite aggressive therapy. Many members of the Eph receptor tyrosine kinase (EphR) family are expressed by GBM stem cells (GSC), which have been implicated in resistance to GBM therapy. In this study, we identify several EphRs that mark a therapeutically targetable GSC population in treatment-refractory, recurrent GBM (rGBM). Using a highly specific EphR antibody panel and CyTOF (cytometry by time-of-flight), we characterized the expression of all 14 EphR in primary and recurrent patient-derived GSCs to identify putative rGBM-specific EphR. EPHA2 and EPHA3 coexpression marked a highly tumorigenic cell population in rGBM that was enriched in GSC marker expression. Knockdown of EPHA2 and EPHA3 together led to increased expression of differentiation marker GFAP and blocked clonogenic and tumorigenic potential, promoting significantly higher survival in vivo Treatment of rGBM with a bispecific antibody against EPHA2/A3 reduced clonogenicity in vitro and tumorigenic potential of xenografted recurrent GBM in vivo via downregulation of AKT and ERK and increased cellular differentiation. In conclusion, we show that EPHA2 and EPHA3 together mark a GSC population in rGBM and that strategic cotargeting of EPHA2 and EPHA3 presents a novel and rational therapeutic approach for rGBM.Significance: Treatment of rGBM with a novel bispecific antibody against EPHA2 and EPHA3 reduces tumor burden, paving the way for the development of therapeutic approaches against biologically relevant targets in rGBM. Cancer Res; 78(17); 5023-37. ©2018 AACR.


Assuntos
Efrina-A2/genética , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Efrina-A2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Células-Tronco Neoplásicas/patologia , Prognóstico , Radiação , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor EphA3 , Receptores da Família Eph/antagonistas & inibidores , Receptores da Família Eph/genética , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Methods Mol Biol ; 1692: 1-16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986882

RESUMO

The Cancer Stem Cell (CSC) hypothesis postulates the existence of a small population of cancer cells with intrinsic properties allowing for resistance to conventional radiochemotherapy regiments and increased metastatic potential. Clinically, the aggressive nature of CSCs has been shown to correlate with increased tumor recurrence, metastatic spread, and overall poor patient outcome across multiple cancer subtypes. Traditionally, isolation of CSCs has been achieved through utilization of cell surface markers, while the functional differences between CSCs and remaining tumor cells have been described through proliferation, differentiation, and limiting dilution assays. The generated insights into CSC biology have further highlighted the importance of studying intratumoral heterogeneity through advanced functional assays, including CRISPR-Cas9 screens in the search of novel targeted therapies. In this chapter, we review the discovery and characterization of cancer stem cells populations within several major cancer subtypes, recent developments of novel assays used in studying therapy resistant tumor cells, as well as recent developments in therapies targeted at cancer stem cells.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Imunoterapia/métodos , Leucemia/terapia
11.
J Neurooncol ; 126(1): 57-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26498281

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults with average disease relapse at 9 months and median survival rarely extending beyond 15 months. Brain tumor stem cells (BTSCs) have been implicated in not only initiating GBM but also conferring resistance to therapy. However, it is not clear whether the BTSC population that initiates tumor growth is also responsible for GBM recurrence. In this study, we have developed a novel in vitro treatment model to profile the evolution of primary treatment-naïve GBM BTSCs through chemoradiotherapy. We report that our in vitro model enriched for a CD15+/CD133- BTSC population, mirroring the phenotype of BTSCs in recurrent GBM. We also show that in vitro treatment increased stem cell gene expression as well as self-renewal capacity of primary GBMs. In addition, the chemoradiotherapy-refractory gene signature obtained from gene expression profiling identified a hyper-aggressive subtype of glioma. The delivery of in vitro chemoradiotherapy to primary GBM BTSCs models several aspects of recurrent GBM biology, and could be used as a discovery and drug-screening platform to uncover new biological drivers and therapeutic targets in GBM.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Antígenos CD/metabolismo , Antinematódeos/farmacologia , Antineoplásicos/farmacologia , Autorrenovação Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
12.
Clin Cancer Res ; 21(23): 5324-37, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26152745

RESUMO

PURPOSE: Clonal evolution of cancer may be regulated by determinants of stemness, specifically self-renewal, and current therapies have not considered how genetic perturbations or properties of stemness affect such functional processes. Glioblastoma-initiating cells (GICs), identified by expression of the cell surface marker CD133, are shown to be chemoradioresistant. In the current study, we sought to elucidate the functional role of CD133 in self-renewal and identify compounds that can specifically target this CD133(+) treatment-refractory population. EXPERIMENTAL DESIGN: Using gain/loss-of-function studies for CD133 we assessed the in vitro self-renewal and in vivo tumor formation capabilities of patient-derived glioblastoma cells. We generated a CD133 signature combined with an in silico screen to find compounds that target GICs. Self-renewal and proliferation assays on CD133-sorted samples were performed to identify the preferential action of hit compounds. In vivo efficacy of the lead compound pyrvinium was assessed in intracranial GIC xenografts and survival studies. Lastly, microarray analysis was performed on pyrvinium-treated GICs to discover core signaling events involved. RESULTS: We discovered pyrvinium, a small-molecule inhibitor of GIC self-renewal in vitro and in vivo, in part through inhibition of Wnt/ß-catenin signaling and other essential stem cell regulatory pathways. We provide a therapeutically tractable strategy to target self-renewing, chemoradioresistant, and functionally important CD133(+) stem cells that drive glioblastoma relapse and mortality. CONCLUSIONS: Our study provides an integrated approach for the eradication of clonal populations responsible for cancer progression, and may apply to other aggressive and heterogeneous cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicoproteínas/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Peptídeos/antagonistas & inibidores , Compostos de Pirvínio/farmacologia , Antígeno AC133 , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Proliferação de Células , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidade , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...