Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 11459-11469, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842950

RESUMO

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652217

RESUMO

Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.

3.
Anal Chem ; 96(8): 3553-3560, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362858

RESUMO

Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.

4.
Small ; 20(25): e2310672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229539

RESUMO

At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.

5.
J Hazard Mater ; 445: 130442, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36436454

RESUMO

It has been considered challenging to develop ideal adsorbents for efficient and lower adsorption time uranium extraction, especially 3D covalent organic frameworks with interpenetrating topologies and tunable porous structures. Here, a "soft" three-dimensional (3D) covalent organic framework (TAM-DHBD) with a fivefold interpenetrating structure is prepared as a novel porous platform for the efficient extraction of radioactive uranium. The resultant TAM-DHBD appears exceptional crystallinity, prominent porosity and excellent chemical stability. Based on the strong mutual coordination between phenolic-hydroxyl/imine-N on the main chain and uranium, TAM-DHBD can effectively avert the competition of other ions, showing high selectivity for uranium extraction. Impressively, the 3D ultra-hydrophilic transport channels and multi-directional uniform pore structure of TAM-DHBD lay the foundation for the ultra-high-speed diffusion of uranium (the adsorption equilibrium can be reached within 60 min under a high-concentration environment). Furthermore, the utilization of lightweight structure not only increases the adsorption site density, but renders the adsorption process flexible, achieving a breakthrough adsorption capacity of 1263.8 mg g-1. This work not only highlights new opportunities for designing microporous 3D COFs, but paves the way for the practical application of 3D COFs for uranium adsorption.

6.
Nat Commun ; 13(1): 7621, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494388

RESUMO

The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.


Assuntos
Estruturas Metalorgânicas , Íons , Alcenos , Carbono
7.
Anal Chem ; 94(30): 10850-10856, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35857436

RESUMO

Technetium (99Tc) is a highly toxic radioactive nuclear wastewater contaminant. Real-time detection of 99Tc is very difficult due to its difficult-to-complex nature. Herein, a novel three-dimensional ionic olefin-linked conjugated microporous polymer (TFPM-EP-Br) is constructed using tetrakis(4-aldehyde phenyl)methane (TFPM) as the central monomer. The unique cationic cavity and highly hydrophobic framework enable TFPM-EP-Br to act as a fluorescent sensor for TcO4-. The fluorophores of TFPM-EP-Br can be quenched due to electron transfer from TFPM-EP-Br to TcO4- and the formation of strongly nonfluorescent complexes. Meanwhile, the regular pore channels are beneficial for the fast mass transfer of TcO4-, resulting in an ultrafast response time (less than 2 s) with an ultralow detection limit (33.3 nM). In addition, the ultrahigh specific surface area enables TFPM-EP-Br to combine the ability to synergistically detect and remove radioactive 99Tc. From this perspective, the novel conjugated microporous polymer has made a breakthrough in the detection and extraction of radioactive contaminants.


Assuntos
Polímeros , Águas Residuárias , Alcenos , Cátions , Tecnécio/química
8.
Chin Herb Med ; 13(4): 480-493, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36119366

RESUMO

The plants of Orchidaceae are widely distributed in the world, 47 species of which have been used as folk medicines with a long history. The tubers and stems of them exhibit diverse efficacy, including clearing heat and resolving toxin, moistening lung and relieving cough and promoting blood circulation. Since dihydrophenanthrenes were responsible for the medical purposes, the characteristic skeletons, pharmacological effects and clinical applications of dihydrophenanthrenes were summarized in this review, so as to provide a theoretical basis for the comprehensive study, development and application of DPs from medicinal plants of Orchidaceae.

9.
Anal Chim Acta ; 1128: 11-18, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32825895

RESUMO

Stimulus-responsive double-ligand luminol-Eu-IPA infinite coordination polymer nanoparticles (luminol-Eu-IPA CPNPs) were prepared as a ratiometric fluorescence probe for highly selective detecting Hg2+. The CPNPs were constituted of Eu3+ as the nuclear metal coordinated by isophthalic acid (IPA) together with luminol as an auxiliary ligand. The photoinduced electron transfer (PET) occurring from IPA to luminol prevented the antenna effect between IPA and Eu3+, leading to the quench fluorescence of Eu3+ under light excitation. As Hg2+ has a high affinity to N atom of luminol and the spin-orbit coupling effect, spectroscopically and magnetically silent properties, the fluorescence intensity of luminol was quenched. Meanwhile, the PET effect between luminol and IPA was interrupted under the presence of Hg2+. This process resulted in a significant decrease in the fluorescence intensity of luminol and a significant increase in the fluorescence intensity of Eu3+. Therefore, the fluorescence ratiometric detection of Hg2+ was performed by monitoring the ratio of the fluorescence at 617 nm of Eu3+ to that at 430 nm of luminol. The linear range was from 0.05 to 20 µM with a detection limit as low as 13.2 nM Hg2+ (S/N = 3). Due to the fluorescence of luminol be quenched and the effect of PET be disrupted simultaneously, the probe exhibiting excellent detection selectively can avoid false positive signals, which was demonstrated for monitoring mercury ions in real water samples. Precision in positioning ligands in CPNPs is an advantage to achieve high specificity in comparison to traditional organic dendrimers or precious metal nanomaterials.

10.
Huan Jing Ke Xue ; 40(5): 2302-2309, 2019 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087870

RESUMO

Microbial electrosynthesis systems (MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst, which is expected to help achieve conversion of greenhouse gases into resources. However, the synthetic efficiency of MESs is far behind the industry requirements. In this study, carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors. The results showed that the hydrophilicity of the carbon cloth surfaces improved after the carboxyl groups were modified. However, weaker current of cyclic voltammetry was obtained in the modified cathode. Significant differences were observed between modified (CA-H, CA-M, CA-L) and non-modified cathode (CK) during the start-up period. After 48h, the hydrogen production rate of CA-H, CA-M, CA-L was 21.45, 28.60, and 22.75 times higher than CK. After 120h, the acetate accumulation concentration of CA-H, CA-M, CA-L was 2.01, 2.43, and 1.44 times higher than CK. After 324h, there was little difference in the electrochemical activity of cathodic biofilm and protein content (about 0.47 mg·cm-2) in all groups. The analysis of the community structure of cathodic biofilm showed that, in the genus level, Acetobacterium, Norank_p_Saccharibacteria, and Thioclava were the dominant species, accounting for 59.6% to 82.1%. There was little difference in the relative abundance of Acetobacterium in all groups (31.3% to 40.1%). However, the relative abundance of norank_p_Saccharibacteria in CA-H, CA-M, CA-L, and CK were 16.1%, 24.6%, 31.1%, and 37.5%, respectively. The carboxyl modified cathode had a great influence on the start-up stage of MESs, which could be a new idea for the rapid start-up of MESs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...