Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 385(6704): 99-104, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963849

RESUMO

Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).

2.
Science ; 384(6701): 1254-1259, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870285

RESUMO

Low-dimensional water transport can be drastically enhanced under atomic-scale confinement. However, its microscopic origin is still under debate. In this work, we directly imaged the atomic structure and transport of two-dimensional water islands on graphene and hexagonal boron nitride surfaces using qPlus-based atomic force microscopy. The lattice of the water island was incommensurate with the graphene surface but commensurate with the boron nitride surface owing to different surface electrostatics. The area-normalized static friction on the graphene diminished as the island area was increased by a power of ~-0.58, suggesting superlubricity behavior. By contrast, the friction on the boron nitride appeared insensitive to the area. Molecular dynamic simulations further showed that the friction coefficient of the water islands on the graphene could reduce to <0.01.

3.
Nat Nanotechnol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844662

RESUMO

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

4.
Nature ; 629(8010): 74-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693415

RESUMO

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

5.
Adv Mater ; 36(11): e2303122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37522646

RESUMO

Nonlinear optical crystals lie at the core of ultrafast laser science and quantum communication technology. The emergence of 2D materials provides a revolutionary potential for nonlinear optical crystals due to their exceptionally high nonlinear coefficients. However, uncontrolled stacking orders generally induce the destructive nonlinear response due to the optical phase deviation in different 2D layers. Therefore, conversion efficiency of 2D nonlinear crystals is typically limited to less than 0.01% (far below the practical criterion of >1%). Here, crystalline films of rhombohedral boron nitride (rBN) with parallel stacked layers are controllably synthesized. This success is realized by the utilization of vicinal FeNi (111) single crystal, where both the unidirectional arrangement of BN grains into a single-crystal monolayer and the continuous precipitation of (B,N) source for thick layers are guaranteed. The preserved in-plane inversion asymmetry in rBN films keeps the in-phase second-harmonic generation field in every layer and leads to a record-high conversion efficiency of 1% in the whole family of 2D materials within the coherence thickness of only 1.6 µm. The work provides a route for designing ultrathin nonlinear optical crystals from 2D materials, and will promote the on-demand fabrication of integrated photonic and compact quantum optical devices.

6.
Phys Rev Lett ; 131(23): 233801, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134808

RESUMO

Optical phase matching involves establishing a proper phase relationship between the fundamental excitation and generated waves to enable efficient optical parametric processes. It is typically achieved through birefringence or periodic polarization. Here, we report that the interlayer twist angle in two-dimensional (2D) materials creates a nonlinear geometric phase that can compensate for the phase mismatch, and the vertical assembly of the 2D layers with a proper twist sequence generates a nontrivial "twist-phase-matching" (twist-PM) regime. The twist-PM model provides superior flexibility in the design of optical crystals, which can be applied for twisted layers with either periodic or random thickness distributions. The designed crystal from the twisted rhombohedral boron nitride films within a thickness of only 3.2 µm is capable of producing a second-harmonic generation with conversion efficiency of ∼8% and facile polarization controllability that is absent in conventional crystals. Our methodology establishes a platform for the rational design and atomic manufacturing of nonlinear optical crystals based on abundant 2D materials.

7.
Phys Rev Lett ; 131(1): 016201, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478456

RESUMO

In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.

8.
Nano Lett ; 23(4): 1211-1218, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36748951

RESUMO

Interfacial atomic configuration and its evolution play critical roles in the structural stability and functionality of mixed zero-dimensional (0D) metal nanoparticles (NPs) and two-dimensional (2D) semiconductors. In situ observation of the interface evolution at atomic resolution is a vital method. Herein, the directional migration and structural evolution of Au NPs on anisotropic ReS2 were investigated in situ by aberration-corrected transmission electron microscopy. Statistically, the migration of Au NPs with diameters below 3 nm on ReS2 takes priority with greater probability along the b-axis direction. Density functional theory calculations suggest that the lower diffusion energy barrier enables the directional migration. The coalescence kinetics of Au NPs is quantitatively described by the relation of neck radius (r) and time (t), expressed as r2=Kt. Our work provides an atomic-resolved dynamic analysis method to study the interfacial structural evolution of metal/2D materials, which is essential to the study of the stability of nanodevices based on mixed-dimensional nanomaterials.

9.
Nat Nanotechnol ; 17(1): 33-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34782776

RESUMO

The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.

10.
Front Immunol ; 13: 1061800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618351

RESUMO

Background: Myocardial infarction is a well-established severe consequence of coronary artery disease. However, the lack of effective early biomarkers accounts for the lag time before clinical diagnosis of myocardial infarction. The present study aimed to predict critical genes for the diagnosis of MI by immune infiltration analysis and establish a nomogram. Methods: Gene microarray data were downloaded from Gene Expression Omnibus (GEO). Differential expression analysis, single-cell sequencing, and disease ontology (DO) enrichment analysis were performed to determine the distribution of Differentially Expressed Genes (DEGs) in cell subpopulations and their correlation with MI. Next, the level of infiltration of 16 immune cells and immune functions and their hub genes were analyzed using a Single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, the accuracy of critical markers for the diagnosis of MI was subsequently assessed using receiver operating characteristic curves (ROC). One datasets were used to test the accuracy of the model. Finally, the genes with the most diagnostic value for MI were screened and experimentally validated. Results: 335 DEGs were identified in GSE66360, including 280 upregulated and 55 downregulated genes. Single-cell sequencing results demonstrated that DEGs were mainly distributed in endothelial cells. DO enrichment analysis suggested that DEGs were highly correlated with MI. In the MI population, macrophages, neutrophils, CCR, and Parainflammation were significantly upregulated compared to the average population. NR4A2 was identified as the gene with the most significant diagnostic value in the immune scoring and diagnostic model. 191 possible drugs for the treatment of myocardial infarction were identified by drug prediction analysis. Finally, our results were validated by Real-time Quantitativepolymerase chain reaction and Western Blot of animal samples. Conclusion: Our comprehensive in silico analysis revealed that NR4A2 has huge prospects for application in diagnosing patients with MI.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Animais , Células Endoteliais , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Western Blotting , Biologia Computacional
11.
Artigo em Inglês | MEDLINE | ID: mdl-34574808

RESUMO

The long-distance commute to school caused by urban sprawl and the car-oriented urban construction model are key factors leading to primary/middle school students being picked up by their parents in cars. Encouraging those students to take rail transit can reduce their dependence on cars. This paper uses a stepwise regression based on rail-transit swipe data to explore the influence of the built environment on rail-transit commuting characteristics in Wuhan, and uses a geographically weighted regression (GWR) model to analyze the spatial heterogeneity of significant influencing variables. The study found that: (1) 60% of students are one-way commuters; (2) 88.6% of students travel less than 10 km; (3) the floor area ratio, bus station density and whether the station is a transfer station have an obvious positive effect on the flow of commuters; (4) whether the station is a departure station has a positive effect on the commuting distance, but the mixed degree of land use and road density have a negative effect on the commuting distance. This research can assist cities in formulating built environment optimization measures and related policies to improve school-age children's use of rail transit. This is important in the development of child-friendly cities.


Assuntos
Ambiente Construído , Características de Residência , Cidades , Planejamento Ambiental , Humanos , Instituições Acadêmicas , Meios de Transporte , Caminhada
12.
Nano Lett ; 21(10): 4469-4476, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978428

RESUMO

The electrochemical conversion of CO2 to valuable fuels is a plausible solution to meet the soaring need for renewable energy sources. However, the practical application of this process is limited by its poor selectivity due to scaling relations. Here we introduce the rational design of the monolayer hexagonal boron nitride/copper (h-BN/Cu) interface to circumvent scaling relations and improve the electrosynthesis of CH4. This catalyst possesses a selectivity of >60% toward CH4 with a production rate of 15 µmol·cm-2·h-1 at -1.00 V vs RHE, along with a much smaller decaying production rate than that of pristine Cu. Both experimental and theoretical calculations disclosed that h-BN/Cu interfacial perimeters provide specific chelating sites to immobilize the intermediates, which accelerates the conversion of *CO to *CHO. Our work reports a novel Cu catalyst engineering strategy and demonstrates the prospect of monolayer h-BN contributing to the design of heterostructured CO2 reduction electrocatalysts for sustainable energy conversion.

13.
Nature ; 581(7809): 406-410, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461648

RESUMO

The production of large single-crystal metal foils with various facet indices has long been a pursuit in materials science owing to their potential applications in crystal epitaxy, catalysis, electronics and thermal engineering1-5. For a given metal, there are only three sets of low-index facets ({100}, {110} and {111}). In comparison, high-index facets are in principle infinite and could afford richer surface structures and properties. However, the controlled preparation of single-crystal foils with high-index facets is challenging, because they are neither thermodynamically6,7 nor kinetically3 favourable compared to low-index facets6-18. Here we report a seeded growth technique for building a library of single-crystal copper foils with sizes of about 30 × 20 square centimetres and more than 30 kinds of facet. A mild pre-oxidation of polycrystalline copper foils, followed by annealing in a reducing atmosphere, leads to the growth of high-index copper facets that cover almost the entire foil and have the potential of growing to lengths of several metres. The creation of oxide surface layers on our foils means that surface energy minimization is not a key determinant of facet selection for growth, as is usually the case. Instead, facet selection is dictated randomly by the facet of the largest grain (irrespective of its surface energy), which consumes smaller grains and eliminates grain boundaries. Our high-index foils can be used as seeds for the growth of other Cu foils along either the in-plane or the out-of-plane direction. We show that this technique is also applicable to the growth of high-index single-crystal nickel foils, and we explore the possibility of using our high-index copper foils as substrates for the epitaxial growth of two-dimensional materials. Other applications are expected in selective catalysis, low-impedance electrical conduction and heat dissipation.

14.
Adv Mater ; 32(19): e2000046, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196773

RESUMO

In the "post-Moore's Law" era, new materials are highly expected to bring next revolutionary technologies in electronics and optoelectronics, wherein 2D materials are considered as very promising candidates beyond bulk materials due to their superiorities of atomic thickness, excellent properties, full components, and the compatibility with the processing technologies of traditional complementary metal-oxide semiconductors, enabling great potential in fabrication of logic, storage, optoelectronic, and photonic 2D devices with better performances than state-of-the-art ones. Toward the massive applications of highly integrated 2D devices, large-size 2D single crystals are a prerequisite for the ultimate quality of materials and extreme uniformity of properties. However, at present, it is still very challenging to grow all 2D single crystals into the wafer scale. Therefore, a systematic understanding for controlled growth of various 2D single crystals needs to be further established. Here, four key aspects are reviewed, i.e., nucleation control, growth promotion, surface engineering, and phase control, which are expected to be controllable at different periods during the growth. In addition, the perspectives on designed growth and potential applications are discussed for showing the bright future of these advanced material systems of 2D single crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...