Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 38(1): 56-65, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36216242

RESUMO

Noroviruses (NoVs) are the primary cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) are receptors or attachment factors that affect the prevalence and host susceptibility of NoVs. GII.6 NoV is one of the predominant genotypes in humans, which recognizes the type ABO secretor of HBGAs. However, the structural basis of GII.6 NoV's interaction with HBGAs receptors remains elusive. In this study, we investigated the binding features of the GII.6 strain to HBGAs using saliva- and glycan-ELISA assays and characterized the molecular basis of the GII.6 virus that recognizes H disaccharide. We showed that the GII.6 â€‹P domain recognized some A and O secretor's saliva samples, most B secretor's saliva samples, and H disaccharide antigen, but did not bind non-secretors' saliva. Further, we determined the crystal structures of GII.6 and its complex with H disaccharides at 1.7 â€‹Å, revealing that the P domain of GII.6 shares the conventional binding interface and mode of GII HBGAs. Single residue mutations at the GII.6-H binding sites could inhibit the binding of GII.6 to HBGAs, demonstrating that the interaction residues were crucial in maintaining NoV-glycan integrity. Finally, structural and sequence analyses showed that the major residues of the GII.6-H interaction were conserved among NoVs in the GII genogroup. Taken together, our study characterized the functional and structural features of GII.6 that allow it to interact with HBGAs, and shed light on NoV evolution, epidemiology, and anti-viral drug development.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Norovirus , Humanos , Antígenos de Grupos Sanguíneos/metabolismo , Norovirus/genética , Ligação Viral , Ligação Proteica , Polissacarídeos/metabolismo , Dissacarídeos/metabolismo , Genótipo
2.
J Nat Prod ; 85(2): 327-336, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35084181

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 5 million deaths worldwide to date. Due to the limited therapeutic options so far available, target-based virtual screening with LC/MS support was applied to identify the novel and high-content compounds 1-4 with inhibitory effects on SARS-CoV-2 in Vero E6 cells from the plant Dryopteris wallichiana. These compounds were also evaluated against SARS-CoV-2 in Calu-3 cells and showed unambiguous inhibitory activity. The inhibition assay of targets showed that compounds 3 and 4 mainly inhibited SARS-CoV-2 3CLpro, with effective Kd values. Through docking and molecular dynamics modeling, the binding site is described, providing a comprehensive understanding of 3CLpro and interactions for 3, including hydrogen bonds, hydrophobic bonds, and the spatial occupation of the B ring. Compounds 3 and 4 represent new, potential lead compounds for the development of anti-SARS-CoV-2 drugs. This study has led to the development of a target-based virtual screening method for exploring the potency of natural products and for identifying natural bioactive compounds for possible COVID-19 treatment.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Floroglucinol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Terpenos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Dryopteris/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Estrutura Molecular , Realidade Virtual
3.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118252

RESUMO

Human noroviruses (huNoVs) recognize histo-blood group antigens (HBGAs) as host susceptibility factors. GII.13 and GII.21 huNoVs form a unique genetic lineage that emerged from mainstream GII NoVs via development of a new, nonconventional glycan binding site (GBS) that binds Lea antigen. This previous finding raised the question of whether the new GII.13/21 GBS really has such a narrow glycan binding spectrum. In this study, we provide solid phenotypic and structural evidence indicating that this new GBS recognizes a group of glycans with a common terminal ß-galactose (ß-Gal). First, we found that P domain proteins of GII.13/21 huNoVs circulating at different times bound three glycans sharing a common terminal ß-Gal, including Lec, lactose, and mucin core 2. Second, we solved the crystal structures of the GII.13 P dimers in complex with Lec and mucin core 2, which showed that ß-Gal is the major binding saccharide. Third, nonfat milk and lactose blocked the GII.13/21 P domain-glycan binding, which may explain the low prevalence of GII.13/21 viruses. Our data provide new insight into the host interactions and epidemiology of huNoVs, which would help in the control and prevention of NoV-associated diseases.IMPORTANCE Evidence from both phenotypic binding assay and structural study support the observed interactions of human noroviruses (huNoVs) with histo-blood group antigens (HBGAs) as receptors or attachment factors, affecting their host susceptibility. GII.13 and GII.21 genotypes form a unique genetic lineage that differs from the mainstream GII huNoVs in their unconventional glycan binding site. Unlike the previous findings that GII.13/21 genotypes recognize only Lea antigen, we found in this study that they can interact with a group of glycans with a common terminal ß-Gal, including Lec, lactose, and mucin core 2. However, this wide glycan binding spectrum in a unique binding mode of the GII.13/21 huNoVs appears not to increase their prevalence, probably due to the existence of decoy glycan receptors in human gastrointestinal tract limiting their infection. Our findings shed light on the host interaction and epidemiology of huNoVs, which would impact the strategy of huNoV control and prevention.


Assuntos
Antígeno CA-19-9/metabolismo , Galactose/metabolismo , Norovirus/fisiologia , Ligação Viral , Antígenos de Grupos Sanguíneos/metabolismo , Genótipo , Humanos , Norovirus/classificação , Norovirus/genética , Ligação Proteica
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(6): 1668-71, 2009 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-19810556

RESUMO

The extraction of the red pellicle of walnut (Juglans regia L.) was analyzed by UV-visible spectra and HPLC-ESI-MS(n) (high-performance-liquid-chromatography coupled with electrospray ionization mass spectrometry). The extraction in ethanol-HCl showed two absorption peaks at 560 and 591 nm respectively in the UV-Vis spectrum; after purified by lead acetate and thin-layer-chromatography, the extraction in ethanol-HCl showed 4 absorption peaks at 340, 370, 552 and 585 nm respectively. These results testified that the anthocyanin was in the extraction. Six molecular ion peaks (m/z) occurred on MS: 301, 481, 633, 783, 785 and 950, which was identified as ellagic acid, Hexahydroxydiphenoyl(HHDP)-glucose, Galloyl-HHDP-glucose, Di-HHDP-glucose, Di-Galloyl-HHDP-glucose, and HHDP-Valoneoyl-glucose respectively.


Assuntos
Juglans/química , Epiderme Vegetal/química , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/isolamento & purificação , Fenóis/análise , Fenóis/isolamento & purificação , Polifenóis , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...