Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(2): 130504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967728

RESUMO

The transgenic expression of rice triketone dioxygenase (TDO; also known as HIS1) can provide protection from triketone herbicides to susceptible dicot crops such as soybean. Triketones are phytotoxic inhibitors of plant hydroxyphenylpyruvate dioxygenases (HPPD). The TDO gene codes for an iron/2-oxoglutarate-dependent oxidoreductase. We obtained an X-ray crystal structure of TDO using SeMet-SAD phasing to 3.16 Å resolution. The structure reveals that TDO possesses a fold like that of Arabidopsis thaliana 2-oxoglutarate­iron-dependent oxygenase anthocyanidin synthase (ANS). Unlike ANS, this TDO structure lacks bound metals or cofactors, and we propose this is because the disordered flexible loop over the active site is sterically constrained from folding properly in the crystal lattice. A combination of mass spectrometry, nuclear magnetic resonance, and enzyme activity studies indicate that rice TDO oxidizes mesotrione in a series of steps; first producing 5-hydroxy-mesotrione and then oxy-mesotrione. Evidence suggests that 5-hydroxy-mesotrione is a much weaker inhibitor of HPPD than mesotrione, and oxy-mesotrione has virtually no inhibitory activity. Of the close homologues which have been tested, only corn and rice TDO have enzymatic activity and the ability to protect plants from mesotrione. Correlating sequence and structure has identified four amino acids necessary for TDO activity. Introducing these four amino acids imparts activity to a mesotrione-inactive TDO-like protein from sorghum, which may expand triketone herbicide resistance in new crop species.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Dioxigenases , Oryza , Oryza/genética , Oryza/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Ácidos Cetoglutáricos , Arabidopsis/metabolismo , Aminoácidos , Ferro
2.
Pest Manag Sci ; 78(7): 2816-2827, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35395133

RESUMO

BACKGROUND: Herbicide-resistant weeds pose a challenge to agriculture and food production. New herbicide tolerance traits in crops will provide farmers with more options to effectively manage weeds. Mesotrione, a selective pre- and post-emergent triketone herbicide used in corn production, controls broadleaf and some annual grass weeds via hydroxyphenylpyruvate dioxygenase (HPPD) inhibition. Recently, the rice HIS1 gene, responsible for native tolerance to the selective triketone herbicide benzobicyclon, was identified. Expression of HIS1 also confers a modest level of mesotrione resistance in rice. Here we report the use of the HIS1 gene to develop a mesotrione tolerance trait in soybean. RESULTS: Conventional soybean is highly sensitive to mesotrione. Ectopic expression of a codon-optimized version of the rice HIS1 gene (TDO) in soybean confers a commercial level of mesotrione tolerance. In TDO transgenic soybean plants, mesotrione is rapidly and locally oxidized into noninhibitory metabolites in leaf tissues directly exposed to the herbicide. These metabolites are further converted into compounds similar to known classes of plant secondary metabolites. This rapid metabolism prevents movement of mesotrione from treated leaves into vulnerable emerging leaves. Minimizing the accumulation of the herbicide in vulnerable emerging leaves protects the function of HPPD and carotenoid biosynthesis more generally while providing tolerance to mesotrione. CONCLUSIONS: Mesotrione has a favorable environmental and toxicological profile. The TDO-mediated soybean mesotrione tolerance trait described here provides farmers with a new option to effectively manage difficult-to-control weeds using familiar herbicide chemistry. This trait can also be adapted to other mesotrione-sensitive crops (e.g. cotton) for effective weed management. © 2022 Bayer Crop Science. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Herbicidas , Oryza , 4-Hidroxifenilpiruvato Dioxigenase/genética , Produtos Agrícolas/genética , Cicloexanonas , Dioxigenases/genética , Dioxigenases/metabolismo , Dioxigenases/farmacologia , Expressão Ectópica do Gene , Resistência a Herbicidas/genética , Herbicidas/química , Oryza/genética , Oryza/metabolismo , Plantas Daninhas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo
3.
Pest Manag Sci ; 76(3): 1031-1038, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31503398

RESUMO

BACKGROUND: Protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides act by inhibiting a key enzyme in the heme and chlorophyll biosynthetic pathways in plants. This enzyme, the PPO enzyme, is conserved across plant species. However, some microbes are known to utilize a unique family of PPO enzymes, the HemG family. This enzyme family carries out the same enzymatic step as the plant PPO enzymes, but does not share sequence homology with the plant PPO enzymes. RESULTS: Bioinformatic analysis was used to identify putative HemG PPO enzyme variants from microbial sources. A subset of these variants was cloned and characterized. HemG PPO variants were characterized for functionality and tolerance to PPO-inhibiting herbicides. HemG PPO variants that exhibited insensitivity to PPO-inhibiting herbicides were identified for further characterization. Expression of selected variants in maize, soybean, cotton and canola resulted in plants that displayed tolerance to applications of PPO-inhibiting herbicides. CONCLUSION: Selected microbial-sourced HemG PPO enzyme variants present an opportunity for building new herbicide tolerance biotechnology traits. These traits provide tolerance to PPO-inhibiting herbicides and, therefore, could provide additional tools for farmers to employ in their weed management systems. © 2019 Society of Chemical Industry.


Assuntos
Biotecnologia , Herbicidas , Protoporfirinogênio Oxidase , Glycine max , Zea mays
4.
J Biol Chem ; 287(37): 31482-93, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22801428

RESUMO

Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A. thaliana and contains a single conserved Zn(2+)-binding B-box domain at the N terminus. Although the B-box domain is predicted to be involved in protein-protein interactions, the mechanism of interaction is poorly understood. Here, we provide in vitro and in vivo evidence demonstrating the physical and functional interactions of AtBBX32 with another B-box protein, soybean BBX62 (GmBBX62). Deletion analysis and characterization of the purified B-box domain indicate that the N-terminal B-box region of AtBBX32 interacts with GmBBX62. Computational modeling and site-directed mutagenesis of the AtBBX32 B-box region identified specific residues as critical for mediating the interaction between AtBBX32 and GmBBX62. This study defines the plant B-box as a protein interaction domain and offers novel insight into its role in mediating specific protein-protein interactions between different plant B-box proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Glycine max/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Ligação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência , Glycine max/química , Glycine max/genética
5.
Plant Physiol Biochem ; 49(3): 251-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21276727

RESUMO

Four previously identified maize asparagine synthetase (AsnS) genes and a soy AsnS gene have been cloned and expressed in Escherichia coli. The enzymes have been purified and kinetically characterized. The plant AsnS proteins were expressed mainly in the inclusion bodies although small amounts of one form (ZmAsnS2) were recovered in the soluble fraction. In order to measure the kinetic properties of these enzymes a sensitive assay based on the detection of Asn by HPLC has been developed. In addition a method to refold the recombinant plant AsnS to produce active enzyme has been developed. The plant AsnS enzymes are kinetically distinct with substantial differences in K(m) (Gln) and V(max) values when compared to each other. These differences may be important factors for transgenic studies using AsnS genes for crop improvement.


Assuntos
Aspartato-Amônia Ligase/farmacocinética , Glycine max/enzimologia , Proteínas de Plantas/química , Zea mays/enzimologia , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/genética , Cromatografia Líquida de Alta Pressão , Corpos de Inclusão , Isoenzimas/química , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Solubilidade
6.
Plant Biotechnol J ; 9(2): 193-204, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20633240

RESUMO

Threonine (Thr) is one of a few limiting essential amino acids (EAAs) in the animal feed industry, and its level in feed rations can impact production of important meat sources, such as swine and poultry. Threonine as well as EAAs lysine (Lys) and methionine (Met) are all synthesized via the aspartate family pathway. Here, we report a successful strategy to produce high free threonine soybean seed via identification of a feedback-resistant aspartate kinase (AK) enzyme that can be over-expressed in developing soybean seed. Towards this goal, we have purified and biochemically characterized AK from the enteric bacterium Xenorhabdus bovienii (Xb). Site-directed mutagenesis of XbAK identified two key regulatory residues Glu-257 and Thr-359 involved in lysine inhibition. Three feedback-resistant alleles, XbAK_T359I, XbAK_E257K and XbAK_E257K/T359I, have been generated. This study is the first to kinetically characterize the XbAK enzyme and provide biochemical and transgenic evidence that Glu-257 near the catalytic site is a critical residue for the allosteric regulation of AK. Furthermore, seed-specific expression of the feedback-resistant XbAK_T359I or XbAK_E257K allele results in increases of free Thr levels of up to 100-fold in R(1) soybean seed when compared to wild-type. Expression of feedback-sensitive wild-type AK did not substantially impact seed Thr content. In addition to high Thr, transgenic seed also showed substantial increases in other major free amino acid (FAA) levels, resulting in an up to 3.5-fold increase in the total FAA content. The transgenic seed was normal in appearance and germinated well under greenhouse conditions.


Assuntos
Aspartato Quinase/genética , Glycine max/genética , Engenharia de Proteínas/métodos , Sementes/genética , Treonina/metabolismo , Xenorhabdus/enzimologia , Aminoácidos/metabolismo , Ração Animal , Aspartato Quinase/química , Aspartato Quinase/metabolismo , Retroalimentação Fisiológica , Alimentos Geneticamente Modificados , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas/metabolismo , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Glycine max/anatomia & histologia , Glycine max/crescimento & desenvolvimento , Xenorhabdus/genética
7.
Plant Cell ; 18(1): 212-24, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16361393

RESUMO

We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis , Arabidopsis , Fosfotransferases , Fitol/metabolismo , Sementes/metabolismo , Vitamina E/metabolismo , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Biologia Computacional , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fitol/química , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Synechocystis/genética , Synechocystis/metabolismo , Transgenes
8.
Appl Environ Microbiol ; 71(10): 5678-84, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16204475

RESUMO

Tocopherols are important antioxidants in lipophilic environments. They are synthesized by plants and some photosynthetic bacteria. Recent efforts to analyze and engineer tocopherol biosynthesis led to the identification of Synechocystis sp. strain PCC 6803 as a well-characterized model system. To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803. The nirA promoter from Synechococcus sp. strain PCC 7942, which is repressed by ammonium and induced by nitrite (S.-I. Maeda et al., J. Bacteriol. 180:4080-4088, 1998), was chosen to drive the expression of Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase. The enzyme catalyzes the formation of homogentisic acid from p-hydroxyphenylpyruvate. Expression of this gene under inducing conditions resulted in up to a fivefold increase in total tocopherol levels with up to 20% of tocopherols being accumulated as tocotrienols. The culture supernatant of these cultures exhibited a brown coloration, a finding indicative of homogentisic acid excretion. Enzyme assays, functional complementation, reverse transcription-PCR, and Western blot analysis confirmed transgene expression under inducing conditions only. These data demonstrate that the nirA promoter can be used to control transgene expression in Synechocystis and that homogentisic acid is a limiting factor for tocopherol synthesis in Synechocystis sp. strain PCC 6803.


Assuntos
Regulação Bacteriana da Expressão Gênica , Nitrito Redutases/genética , Regiões Promotoras Genéticas/genética , Synechococcus/genética , Synechocystis/metabolismo , Tocoferóis/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/genética , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Engenharia Genética/métodos , Nitrito Redutases/metabolismo , Synechocystis/genética , Transgenes
9.
Metab Eng ; 7(5-6): 384-400, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16125431

RESUMO

Tocochromanols (tocopherols and tocotrienols) are important lipid soluble antioxidants and are an essential part of the mammalian diet. Oilseeds are particularly rich in tocochromanols with an average concentration 10-fold higher than other plant tissues. Here we describe a systematic approach to identify rate-limiting reactions in the tocochromanol biosynthetic pathway, and the application of this knowledge to engineer tocochromanol biosynthesis in oilseed crops. Seed-specific expression of genes encoding limiting tocochromanol pathway enzymes in soybean increased total tocochromanols up to 15-fold from 320 ng/mg in WT seed to 4800 ng/mg in seed from the best performing event. Although WT soybean seed contain only traces of tocotrienols, these transgenic soybean accumulated up to 94% of their tocochromanols as tocotrienols. Upon crossing transgenic high tocochromanol soybean with transgenic high alpha-tocopherol soybean, the vitamin E activity in the best performing F2-seed was calculated to be 11-fold higher than the average WT soybean seed vitamin E activity.


Assuntos
Melhoramento Genético/métodos , Glycine max/genética , Glycine max/metabolismo , Sementes/genética , Sementes/metabolismo , Óleo de Soja/metabolismo , Tocoferóis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Óleo de Soja/química , Tocoferóis/química
10.
Appl Microbiol Biotechnol ; 68(4): 436-44, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16041505

RESUMO

Tocochromanols (tocopherols and tocotrienols) are important lipophilic antioxidants for animals and humans. Their biological activity is expressed as vitamin E activity. This article describes the current need for vitamin E production, and compares different strategies to engineer the vitamin E content in photosynthetic bacteria and plants, with a focus on oilseed as target tissues. The current status of biotechnological advances in tocochromanol pathway engineering is summarized, and current limitations in our understanding of the tocochromanol biosynthetic pathway are discussed.


Assuntos
Biotecnologia/tendências , Vitamina E/biossíntese , Animais , Bactérias/metabolismo , Biotecnologia/métodos , Biotecnologia/normas , Humanos , Plantas/metabolismo , Tocoferóis/metabolismo , Tocotrienóis/metabolismo
11.
Planta ; 217(4): 547-58, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12739150

RESUMO

Aminoalcoholphosphotransferases (AAPT, EC 2.7.8.1 and EC 2.7.8.2) catalyze the transfer of CDP-aminoalcohols to sn-1, 2 diacylglycerol (DAG) to form phosphatidylaminoalcohols with the release of CMP. The Brassica napus L. AAPT1 gene (designated BnAAPT1) was identified from cDNA libraries of seedlings and developing seeds. Functional characterization was accomplished by heterologous expression of BnAAPT1 in a yeast strain deficient in AAPT activities. BnAAPT1 exhibited a greater preference for utilizing CDP-choline as a substrate with Vmax of 35 [14C]phosphatidylcholine nmol h(-1) mg(-1) protein and apparent Km of 32 microM while CDP-ethanolamine had a Vmax of 13 [14C]phosphatidylethanolamine nmol h(-1) mg(-1)protein and an apparent Km of 127 microM. The enzyme was activated by Mg2+, Mn2+ and phospholipid mixtures, and inhibited by Ca2+. A CDP-alcohol phosphotransferase motif, Asp99-Gly100-(X2)-Ala103-Arg104-(X8)-Gly113-(X3)-Asp117-(X3)-Asp121, was completely conserved in BnAAPT1 and its catalytic role was confirmed by scanning alanine mutagenesis. Over-expression of BnAAPT1 under the control of the double 35S promoter in transgenic Arabidopsis thaliana (L.) Heynh. plants led to elevated levels of the corresponding transcript and enzyme activity. In four of the high over-expression transgenic lines, phospholipid and fatty acid composition analyses revealed that chloroplastidic and extrachloroplastidic membranes isolated from transgenic leaves had about a 25% increase in phosphatidylcholine and in the proportions of polyunsaturated fatty acids [18:2+18:3], relative to the control. There were also consistent, but small differences observed in the proportions of 18:3 in transgenic green siliques and in 20:1 in mature transgenic seeds of these lines. Induction of Arabidopsis AAPT transcription in response to (+)-abscisic acid and low-temperature treatments, and the cold tolerance in BnAAPT1 transgenic seedlings implies that AAPT may play a role in resistance to damage at low growth temperatures.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Brassica napus/enzimologia , Fosfotransferases/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Brassica napus/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Clonagem Molecular , Temperatura Baixa , Sequência Conservada/genética , DNA Complementar/química , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Indução Enzimática/efeitos dos fármacos , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Ácidos Graxos/análise , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipídeos/análise , Dados de Sequência Molecular , Mutação , Fosfotransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...