Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(22): 11664-11675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353233

RESUMO

Chinese hazelnut was chosen to become a probable precursor of biological active peptides via computer simulations in this article. There were a large number of bioactive peptides in Chinese hazelnut sequences according to analytical results from the BIOPEP database. The most prominent of these was the inhibitory peptide for dipeptidyl peptidase-IV (DPP-IV; EC 3.4.14.5), which can be used to treat type 2 diabetes, so the theoretical method to obtain DPP-IV inhibitory peptides by hydrolysis with a single or combination of enzymes was studied. Cytotoxicity analysis performed by ToxinPred showed that all of the DPP-IV inhibitory peptides generated from protein hydrolysis were not cytotoxic. Structural interaction fingerprint analysis revealed that Asp663 and Phe357 may be important residues for ligand binding. In order to further understand the inhibitory mechanism of peptide, VR with lowest half maximum inhibitory concentration (IC50) and IPI (inhibitors have been reported) were selected as ligand of DPP-IV to perform steered molecular dynamics simulations and PMF calculations. The results showed that P1 is the preferred (un)binding tunnel for the inhibitors obtained. Our findings help in the development of new DPP-IV inhibitors which were derived from common food.Communicated by Ramaswamy H. Sarma.


Assuntos
Corylus , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Corylus/metabolismo , Ligantes , Peptídeos/química
2.
ACS Omega ; 6(17): 11639-11649, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056319

RESUMO

Xanthine oxidase (XO), which can catalyze the formation of xanthine or hypoxanthine to uric acid, is the most important target of gout. To explore the conformational changes for inhibitor binding, molecular dockings and molecular dynamics simulations were performed. Docking results indicated that three inhibitors had similar pose binding to XO. Molecular dynamics simulations showed that the binding of three inhibitors influenced the secondary structure changes in XO. After binding to the inhibitor, the peptide Phe798-Leu814 formed different degrees of unhelix, while for the peptide Glu1065-Ser1075, only a partial helix region was formed when allopurinol was bound. Through the protein structure analysis in the simulation process, we found that the distance between the active residues Arg880 and Thr1010 was reduced and the distance between Glu802 and Thr1010 was increased after the addition of inhibitors. The above simulation results showed the similarities and differences of the interaction between the three inhibitors binding to the protein. MM-PBSA calculations suggested that, among three inhibitors, allopurinol had the best binding effect with XO followed by daidzin and puerarin. This finding was consistent with previous experimental data. Our results can provide some useful clues for further gout treatment research.

3.
RSC Adv ; 10(72): 43994-44002, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517169

RESUMO

Adenosine deaminase (ADA) is an important enzyme related to purine nucleoside metabolism in human serum and various tissues. Abnormal ADA levels are related to a wide variety of diseases such as rheumatoid arthritis, AIDS, anemia, lymphoma, and leukemia and ADA is considered as a useful target for various diseases. Currently, ADA can be divided into open conformation and closed conformation according to the inhibitors of binding. As a consequence, we chose two inhibitors, namely, 6-hydroxy-1,6-dihydro purine nucleoside (PRH) and N-[4,5-bis(4-hydroxyphenyl)-1,3-thiazol-2-yl]hexanamide (FRK) to bind to ADA in the closed conformation or open conformation respectively. In this study, we performed the random acceleration molecular dynamics (RAMD) method, steered molecular dynamics (SMD) simulations and adaptive basing force (ABF) simulation to explore the unbinding tunnels and tunnel characteristics of the two inhibitors in ADA. Our results showed that PRH and FRK escaped from ADA using three main tunnels (namely, T1, T2, and T3). Inhibitors (PRH and FRK) escape through T3 more frequently and more easily. The results from ABF simulations confirm that the free energy barrier in T1 or T2 is larger than that in T3 when inhibitors dissociate from the ADA and have potential mean of force (PMF) depth. Moreover, in the complexes (ADA-PRH, ADA-FRK), we also found that the most active residue that remarkably contributed to the binding affinity is W117 in T3, and the residue played an important role in the unbinding tunnel for inhibitor leaving. Our theoretical study provided insight into the ADA inhibitor passway mechanism and may be a clue for potent ADA inhibitor design.

4.
ACS Omega ; 4(26): 22021-22034, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891082

RESUMO

Cytosolic sulfotransferases (SULTs) acting as phase II metabolic enzymes can be used in the sulfonation of small molecules by transferring a sulfonate group from the unique co-factor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the substrates. In the present study, molecular dynamics (MD) simulations and ensemble docking study were employed to theoretically characterize the mechanism for the effect of co-factor (PAP) and ligands (LCA, raloxifene, α-hydroxytamoxifen, ouabain, and 3'-phosphoadenylyl sulfate) on structural stability and selectivity of SULT2A1 from the perspective of the dynamic behavior of SULT2A1 structures. Structural stability and network analyses indicated that the cooperation between PAP and LCA may enhance the thermal stability and compact communication in enzymes. During the MD simulations, the obviously rigid region and inward displacement were detected in the active-site cap (loop16) of the conformation containing PAP, which may be responsible for the significant changes in substrate accessibility and catalytic activity. The smaller substrates such as LCA could bind stably to the active pocket in the presence of PAP. However, the substrates or inhibitors with a large spatial structure needed to bind to the open conformation (without PAP) prior to PAPS binding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...