Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 58: 182-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26256798

RESUMO

The heat shock protein 90α (HSP90α) provides a promising molecular target for cancer therapy. A series of novel benzolactam inhibitors exhibited distinct inhibitory activity for HSP90α. However, the structural basis for the impact of distinct R1 substituent groups of nine benzolactam inhibitors on HSP90α binding affinities remains unknown. In this study, we carried out molecular docking, molecular dynamics (MD) simulations, and molecular mechanics and generalized Born/surface area (MM-GBSA) binding free energy calculations to address the differences. Molecular docking studies indicated that all nine compounds presented one conformation in the ATP-binding site of HSP90α N-terminal domain. MD simulations and subsequent MM-GBSA calculations revealed that the hydrophobic interactions between all compounds and HSP90α contributed the most to the binding affinity and a good linear correlation was obtained between the calculated and the experimental binding free energies (R=0.88). The per residue decomposition revealed that the most remarkable differences of residue contributions were found in the residues Ala55, Ile96, and Leu107 defining a hydrophobic pocket for the R1 group, consistent with the analysis of binding modes. This study may be helpful for the future design of novel HSP90α inhibitors.


Assuntos
Proteínas de Choque Térmico HSP90 , Lactamas/antagonistas & inibidores , Biomarcadores Tumorais , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...