Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Food Chem ; 454: 139757, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805924

RESUMO

Vibrio vulnificus infection caused by contaminated aquatic products and seawater can lead to severe disease and high mortality. The development of a rapid and sensitive detection method for Vibrio vulnificus is vital to effectively prevent infection in advance. In this study, CeO2@PtRu with high peroxidase activity was used to construct a colorimetric immunoassay for Vibrio vulnificus detection by conjugating polyclonal antibodies via the biotin-streptavidin system. The developed colorimetric biosensor for Vibrio vulnificus demonstrated rapid operability and good sensitivity with a detection range from 104 CFU/mL to 109 CFU/mL, and the limit of detection (LOD) is 193 CFU/mL. Moreover, the colorimetric biosensor showed excellent specificity and good recoveries from 98.70% to 102.10% with RSD < 7.45% for spiked real samples. This novel CeO2@PtRu-based colorimetric biosensor has great application potential for the sensitive detection of Vibrio vulnificus in seafood.


Assuntos
Técnicas Biossensoriais , Cério , Colorimetria , Alimentos Marinhos , Vibrio vulnificus , Vibrio vulnificus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , Cério/química , Peroxidase/metabolismo , Peroxidase/química , Limite de Detecção , Contaminação de Alimentos/análise , Animais
2.
Int J Biol Sci ; 20(5): 1729-1743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481816

RESUMO

Background: N6-methyladenosine (m6A) is the most common and abundant mRNA modification, playing an essential role in biological processes and tumor development. However, the role of m6A methylation in skin cutaneous melanoma (SKCM) is not yet clear. This study analyzed the expression of m6A-related functional genes in SKCM and aimed to explore the key demethylase ALKBH5 mediated m6A modification and its potential mechanism in human SKCM. Methods: Based on public databases, the m6A-related gene expression landscape in SKCM was portrayed. MeRIP-Seq and RNA-Seq were used to recognize the downstream target of ALKBH5. In vivo and in vitro functional phenotype and rescue functional experiments were performed to explore the mechanism of the ALKBH5-m6A-ABCA1 axis in SKCM. Results: We found ALKBH5 upregulated in SKCM, associated with poor prognosis. ALKBH5 can promote melanoma cell proliferation, colony formation, migration, and invasion and inhibit autophagy in vitro, facilitating tumor growth and metastasis in vivo. We identified ABCA1, a membrane protein that assists cholesterol efflux, as a downstream target of ALKBH5-mediated m6A demethylation. Finally, our data demonstrated that ALKBH5 promoted SKCM via mediating ABCA1 downregulation by reducing ABCA1 mRNA stability in an m6A-dependent manner. Conclusion: Our findings exhibited the functional value of the key demethylase ALKBH5 mediated m6A modification in the progression of SKCM, suggesting the ALKBH5-m6A-ABCA1 axis as a potential therapeutic target in SKCM.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Pele , Autofagia/genética , Desmetilação , Homólogo AlkB 5 da RNA Desmetilase/genética , Transportador 1 de Cassete de Ligação de ATP
3.
Burns Trauma ; 12: tkad048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179473

RESUMO

Background: Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods: Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results: Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions: PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.

4.
Biomedicines ; 11(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38137441

RESUMO

Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.

5.
Cell Death Discov ; 9(1): 341, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704618

RESUMO

Hypertrophic scar (HS) is an abnormal fibrous hyperplasia of the skin caused by excessive tissue repair in response to skin burns and trauma, which restricts physical function and impairs patients' quality of life. Numerous studies have shown that pressure garment therapy (PGT) is an effective treatment for preventing hypertrophic scars. Herein, we found that mechanical stress stimulates the neuropilin 1 (NRP1) expression through screening GSE165027, GSE137210, and GSE120194 from Gene Expression Omnibus (GEO) database and bioinformatics analysis. We verified this stimulation in the human hypertrophic scar, pressure culture cell model, and rat tail-scar model. Mechanical compression increased LATS1 and pYAP enrichment, thus repressing the expression of YAP. Functionally, the knockdown of NRP1 promoted the expression of LATS1, thus decreasing the expression of YAP and inhibiting endothelial cell proliferation. Furthermore, co-immunoprecipitation analysis confirmed that NRP1 binds to YAP, and mechanical compression disrupted this binding, which resulted in the promotion of YAP relocation to nuclear. In conclusion, our results indicated that NRP1 transduces mechanical force inhibition by inhibiting YAP expression. Mechanical pressure can release YAP bound to NRP1, which explains the phenomenon that mechanical stress increases YAP in the nucleus. Strategies targeting NRP1 may promote compression therapy with optimal and comfortable pressures.

6.
ACS Appl Mater Interfaces ; 15(32): 38230-38246, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37535406

RESUMO

Morbid dermal templates, microangiopathy, and abnormal inflammation are the three most critical reasons for the scarred healing and the high recurrence rate of diabetic wounds. In this present study, a combination of a methacrylated decellularized extracellular matrix (ECMMA, aka EM)-based hydrogel system loaded with copper-epigallocatechin gallate (Cu-EGCG) capsules is proposed to fabricate bio-printed dermal scaffolds for diabetic wound treatment. Copper ions act as a bioactive element for promoting angiogenesis, and EGCG can inhibit inflammation on the wound site. In addition to the above activities, EM/Cu-EGCG (E/C) dermal scaffolds can also provide optimized templates and nutrient exchange space for guiding the orderly deposition and remodeling of ECM. In vitro experiments have shown that the E/C hydrogel can promote angiogenesis and inhibit the polarization of macrophages to the M1 pro-inflammatory phenotype. In the full-thickness skin defect model of diabetic rats, the E/C dermal scaffold combined with split-thickness skin graft transplantation can alleviate pathological scarring via promoting angiogenesis and driving macrophage polarization to the anti-inflammatory M2 phenotype. These may be attributed to the scaffold-actuated expression of angiogenesis-related genes in the HIF-1α/vascular endothelial growth factor pathway and decreased expression of inflammation-related genes in the TNF-α/NF-κB/MMP9 pathway. The results of this study show that the E/C dermal scaffold could serve as a promising artificial dermal analogue for solving the problems of delayed wound healing and reulceration of diabetic wounds.


Assuntos
Cicatriz , Diabetes Mellitus Experimental , Ratos , Animais , Cobre/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Inflamação , Hidrogéis/farmacologia , Impressão Tridimensional
7.
Dev Cell ; 58(13): 1139-1152.e6, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192621

RESUMO

Pressure therapy (PT) is an effective intervention for reducing scarring, but its underlying mechanism remains largely unclear. Here, we demonstrate that human scar-derived myofibroblasts dedifferentiate into normal fibroblasts in response to PT, and we identify how SMYD3/ITGBL1 contributes to the nuclear relay of mechanical signals. In clinical specimens, reductions in SMYD3 and ITGBL1 expression levels are strongly associated with the anti-scarring effects of PT. The integrin ß1/ILK pathway is inhibited in scar-derived myofibroblasts upon PT, leading to decreased TCF-4 and subsequently to reductions in SMYD3 expression, which reduces the levels of H3K4 trimethylation (H3K4me3) and further suppresses ITGBL1 expression, resulting the dedifferentiation of myofibroblasts into fibroblasts. In animal models, blocking SMYD3 expression results in reductions of scarring, mimicking the positive effects of PT. Our results show that SMYD3 and ITGBL1 act as sensors and mediators of mechanical pressure to inhibit the progression of fibrogenesis and provide therapeutic targets for fibrotic diseases.


Assuntos
Cicatriz , Miofibroblastos , Animais , Humanos , Miofibroblastos/metabolismo , Cicatriz/patologia , Fibroblastos/metabolismo , Transdução de Sinais , Integrina beta1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo
8.
Bioeng Transl Med ; 8(1): e10373, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684072

RESUMO

Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti-inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system with silver nanoparticles embed in γ-cyclodextrin metal-organic frameworks (Ag@MOF) and hyaluronic acid-epigallocatechin gallate (HA-E) for the burn wound infection treatment. Ag@MOF is used as an antibacterial agent and epigallocatechin gallate (EGCG) has exhibited biological properties of anti-inflammation and antibacterial. The GelMA/HA-E/Ag@MOF hydrogel enjoys suitable physical properties and sustained release of Ag+. Meanwhile, the hydrogel has excellent biocompatibility and could promote macrophage polarization from M1 to M2. In vivo wound healing evaluations further demonstrate that the GelMA/HA-E/Ag@MOF hydrogel reduces the number of the bacterium efficiently, accelerates wound healing, promotes early angiogenesis, and regulates immune reaction. A further evaluation indicates that the noncanonical Wnt signal pathway is significantly activated in the GelMA/HA-E/Ag@MOF hydrogel treated group. In conclusion, the GelMA/HA-E/Ag@MOF hydrogel could serve as a promising multifunctional dressing for the burn wound healing.

9.
J Cosmet Dermatol ; 22(6): 1893-1905, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36701151

RESUMO

BACKGROUND: Keloid is a pathological dermatological condition that manifests as an overgrowth scar secondary to skin trauma. This study endeavored to excavate immune-related signatures of keloid based on single-cell RNA (scRNA) sequencing data and bulk RNA sequencing data. METHOD: The keloid-relevant scRNA sequencing dataset GSE163973 and bulk RNA sequencing dataset GSE113619 were mined from the GEO database. The "Seurat" R package was utilized for data quality control, cell clustering, and investigation of marker genes of each cell cluster. The "SingleR" package helped match the marker genes of the corresponding cluster to specific cell types. Moreover, the R package "Monocle" was deployed for pseudotemporal ordering analysis, and the "clusterProfiler" was applied for functional and pathway enrichment analysis. The immune-related signatures were then identified, and potential targeted drugs were predicted via the DGIdb database. Verification of the immune-related signatures in clinical validation samples was implemented by RT-qPCR. RESULTS: Totally 23 cell clusters were screened and classified into 10 cell types based on the scRNA sequencing data. The keloid group had a significantly higher endothelial cell proportion than the control group. As enrichment analysis was applied in both differentially expressed genes (DEGs) of scRNA and bulk RNA sequencing data, we found they were enriched in multiple common immune-related pathways and biological processes. Meanwhile, we acquired three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) by intersecting the above DEGs with immune-related genes (IRGs). Then, we predicted 16 drugs potentially targeting the biomarkers through the DGIdb database. Finally, the outcome of RT-qPCR of clinical validation samples further verified the results. CONCLUSION: In conclusion, we analyzed the cell types and functional differences in the keloid through scRNA and bulk RNA sequencing data. We identified three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) in keloid, providing a basis for further in-depth investigation of the molecular mechanisms of keloid and exploration of therapeutic targets.


Assuntos
Queloide , Humanos , Queloide/genética , Transcriptoma , Perfilação da Expressão Gênica , Sistemas de Liberação de Medicamentos , Células Endoteliais
10.
Genomics ; 114(4): 110403, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709926

RESUMO

BACKGROUND: Keloid is a benign proliferative disease characterized by excessive deposition of extracellular matrix collagen during skin wound healing. The mechanisms of keloid formation have not been fully elucidated, and the current treatment methods are not effective for all keloid patients. Therefore, there is an urgent need to find more effective therapies, and our research focused on identifying characteristic molecular signatures of keloid to explore potential therapeutic targets. METHODS: Gene expression profiles of keloid and control group samples were retrieved from the GEO database. Taking the GSE113619 dataset as the training set, the dataset collected skin tissues from non-lesion sites of healthy and keloid-prone individuals, denoted as Day0. The second sampling was performed 42 days later at the original sampling site of control and keloid groups, denoted as Day42.The 'limma' package and Venn diagram identified differentially expressed genes (DEGs) specific to keloid day42 versus day0 samples. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway functional enrichment, and annotation of the characteristic genes were conducted on the Metascape website. Ingenuity canonical pathways, disease & function enrichment analysis and gene interaction network were performed and predicted in Ingenuity Pathway Analysis (IPA) software. Key module genes related to keloid were filtered out by Weighted Gene Co-expression Network Analysis (WGCNA). We utilized the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to screen the characteristic genes in keloid by the 'glmnet' package. The area under the curve (AUC) of receiver operating characteristic (ROC) was utilized to determine the effectiveness of potential signatures in discriminating keloid samples from normal samples and performed by using the 'pROC' package. The enrich scores of 24 immune cells in each sample were calculated by the single-sample gene set enrichment analysis (ssGSEA) algorithm, and then the Gene Set Variation Analysis (GSVA) was performed. Finally, RNA from 4 normal and 6 keloid samples was extracted, and RT-qPCR and Western Blot validated the expression of characteristic genes. RESULTS: A total of 640 DEGs specific to keloid day42 versus day0 samples were detected. 69 key module genes were uncovered and implicated in 'NCAM signaling for neurite out-growth', 'oncogenic MAPK signaling', 'transmission across chemical synapses' pathways, and the mitotic cell cycle-related processes. Five characteristic genes (MTUS1, UNC5C, CEP57, NAA35, and HOXD3) of keloid were identified by LASSO, and among which UNC5C and HOXD3 were validated by ROC plot in external dataset, RT-qPCR and Western Blot in validation samples. The result of ssGSEA indicated that the infiltration of neutrophils showed a relatively higher abundance and natural killer cells with relatively low enrichment in the keloid group compared to the control group. UNC5C was correlated with more immune cells compared with other characteristic genes. CONCLUSION: In this study, characteristic genes associated with keloid were identified by bioinformatic approaches and verified in clinical validation samples, providing potential targets for the diagnosis and treatment of keloid.


Assuntos
Proteínas de Homeodomínio/metabolismo , Queloide , Fatores de Transcrição/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Queloide/tratamento farmacológico , Queloide/genética , Queloide/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/uso terapêutico , Receptores de Netrina/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
11.
Cancer Sci ; 113(4): 1220-1234, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189004

RESUMO

Owing to recent advances in immunotherapies, the overall survival of patients with skin cutaneous melanoma (SKCM) has increased; however, the 5-year survival rate of metastatic patients remains poor. Skin cutaneous melanoma-upregulated genes were screened via analysis of differentially expressed genes (GSE3189 and GSE46517), and metastasis-related oncogenes were identified via weighted gene coexpression network analysis of the GSE46517 dataset. As confirmed by the Tumor Immune Estimation Resource, we found highly expressed centromere protein F (CENPF) in SKCM and its metastases. Immunostaining of human melanoma tissues demonstrated high CENPF expression. According to the Kaplan-Meier survival curve log-rank test, receiver-operating characteristic curve, and univariate and multivariate analyses, the Cancer Genome Atlas (TCGA) database suggested CENPF be a typical independent predictor of SKCM. The CIBERSORT algorithm classified the types of the immune cells from GSE46517 and showed higher proportion of CD4+ memory-activated T cells in metastatic melanoma. Single-sample gene set enrichment analysis of TCGA data confirmed the correlation between CENPF and activated CD4+ T cells. Centromere protein F was positively correlated with tumor mutational burden and CD4+ memory T cell markers (interleukin [IL]-23A, CD28, and CD62L), negatively associated with memory T cell maintenance factors (IL-7 and IL-15) by correlation analysis. Moreover, immunofluorescence showed high coexpression of CENPF and IL23A, CD4 in melanoma. Upregulated CENPF might lead to premature depletion of CD4+ memory T cells and immunosuppression. Nomogram indicated CENPF clinical predictive value for 1-, 3-, 5-, and 7-year melanoma overall survival. Therefore, CENPF plays a vital role in the progression and metastasis of melanoma and can be an effective therapeutic target.


Assuntos
Melanoma , Neoplasias Cutâneas , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proteínas Cromossômicas não Histona , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/patologia , Células T de Memória , Proteínas dos Microfilamentos , Prognóstico , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
12.
J Invest Dermatol ; 142(9): 2508-2517.e13, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35181300

RESUMO

Diabetic foot ulceration is a major diabetic complication with unmet needs. We investigated the efficacy of epidermal stem cells and epidermal stem cells-derived exosomes (ESCs-Exo) in improving impaired diabetic wound healing and their mechanisms of action. In vitro experiments showed that ESCs-Exo enhanced the proliferation and migration of diabetic fibroblasts and macrophages and promoted alternative or M2 macrophage polarization. In wounds of db/db mice, treatment with both epidermal stem cells and ESCs-Exo, when compared with fibroblast exosomes and PBS control, accelerated wound healing by decreasing inflammation, augmenting wound cell proliferation, stimulating angiogenesis, and inducing M2 macrophage polarization. Multiplex protein quantification of wound lysates revealed TGFß signaling influenced by ESCs-Exo. High-throughput sequencing of small RNAs contained in the ESCs-Exo showed higher proportions of microRNAs than those contained in fibroblast exosomes. In silico functional analysis showed that the ESCs-Exo microRNAs‒target genes were primarily involved in homeostatic processes and cell differentiation and highlighted regulatory control of phosphatidylinositol-3 kinase/protein kinase B and TGFß signaling pathways. This was also validated in vitro. Collectively, our results indicate that epidermal stem cells and ESCs-Exo are equally effective in promoting impaired diabetic wound healing and that ESCs-Exo treatment may be a promising and technically advantageous alternative to stem cell therapies.


Assuntos
Diabetes Mellitus , Pé Diabético , Exossomos , MicroRNAs , Animais , Pé Diabético/metabolismo , Pé Diabético/terapia , Exossomos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco , Fator de Crescimento Transformador beta/metabolismo , Cicatrização
13.
Bioact Mater ; 10: 236-246, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901542

RESUMO

Scar contraction frequently happens in patients with deep burn injuries. Hitherto, porcine dermal extracellular matrix (dECM) has supplied microenvironments that assist in wound healing but fail to inhibit scar contraction. To overcome this drawback, we integrate dECM into three-dimensional (3D)-printed dermal analogues (PDA) to prevent scar contraction. We have developed thermally gelled, non-rheologically modified dECM powder (dECMp) inks and successfully transformed them into PDA that was endowed with a micron-scale spatial structure. The optimal crosslinked PDA exhibited desired structure, good mechanical properties as well as excellent biocompatibility. Moreover, in vivo experiments demonstrated that PDA could significantly reduced scar contraction and improved cosmetic upshots of split thickness skin grafts (STSG) than the commercially available dermal templates and STSG along. The PDA has also induced an early, intense neovascularization, and evoked a type-2-like immune response. PDA's superior beneficial effects may attribute to their desired porous structure, the well-balanced physicochemical properties, and the preserved dermis-specific ECM cues, which collectively modulated the expression of genes such as Wnt11, ATF3, and IL1ß, and influenced the crucial endogenous signalling pathways. The findings of this study suggest that PDA is a clinical translatable material that possess high potential in reducing scar contraction.

14.
Cancer Cell Int ; 21(1): 694, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930258

RESUMO

BACKGROUND: Skin cutaneous melanoma (SKCM) is the most common skin tumor with high mortality. The unfavorable outcome of SKCM urges the discovery of prognostic biomarkers for accurate therapy. The present study aimed to explore novel prognosis-related signatures of SKCM and determine the significance of immune cell infiltration in this pathology. METHODS: Four gene expression profiles (GSE130244, GSE3189, GSE7553 and GSE46517) of SKCM and normal skin samples were retrieved from the GEO database. Differentially expressed genes (DEGs) were then screened, and the feature genes were identified by the LASSO regression and Boruta algorithm. Survival analysis was performed to filter the potential prognostic signature, and GEPIA was used for preliminary validation. The area under the receiver operating characteristic curve (AUC) was obtained to evaluate discriminatory ability. The Gene Set Variation Analysis (GSVA) was performed, and the composition of the immune cell infiltration in SKCM was estimated using CIBERSORT. At last, paraffin-embedded specimens of primary SKCM and normal skin tissues were collected, and the signature was validated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). RESULTS: Totally 823 DEGs and 16 feature genes were screened. IFI16 was identified as the signature associated with overall survival of SKCM with a great discriminatory ability (AUC > 0.9 for all datasets). GSVA noticed that IFI16 might be involved in apoptosis and ultraviolet response in SKCM, and immune cell infiltration of IFI16 was evaluated. At last, FISH and IHC both validated the differential expression of IFI16 in SKCM. CONCLUSIONS: In conclusion, our comprehensive analysis identified IFI16 as a signature associated with overall survival and immune infiltration of SKCM, which may play a critical role in the occurrence and development of SKCM.

15.
Jpn J Infect Dis ; 74(6): 549-553, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33952769

RESUMO

Vibrio vulnificus (V. vulnificus) infection is rare but potentially fatal. This study explored new atypical manifestations and prognostic factors of V. vulnificus-infected patients during hospitalization. We retrospectively reviewed the medical records of 33 patients diagnosed with V. vulnificus infection in Guangdong Province, China between 2010 and 2020. Multiple logistic regression and receiver operating characteristic (ROC) curve analyses were performed. The new atypical manifestations included cholangitis, urinary tract infection, and suppurative otitis media. Eleven of the 33 (33.3%) V. vulnificus-infected patients eventually died. Univariate analysis showed that patients with cardio-cerebrovascular diseases, lower platelet counts, and higher levels of C-reactive protein and procalcitonin (PCT) had statistically higher mortality. However, multivariate analysis showed that only the PCT level (P = 0.036) was statistically significant. In addition, the area under the ROC value estimate for PCT was 0.8816 (95% confidence interval (CI), 0.759-1.000; P = 0.0009). More than half of the patients with V. vulnificus infection died when PCT was > 20 ng/mL, while no patient died when PCT was ≤ 20 ng/mL. This study found new atypical manifestations of V. vulnificus infection. In addition, PCT was an effective and independent predictor of mortality in patients with V. vulnificus infection, allowing clinicians to conduct early risk stratification and determine the best therapeutic strategies.


Assuntos
Vibrioses/diagnóstico , Vibrio vulnificus/isolamento & purificação , Idoso , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Centros de Atenção Terciária , Vibrioses/tratamento farmacológico , Vibrioses/epidemiologia , Vibrio vulnificus/efeitos dos fármacos
16.
J Immunol Res ; 2021: 6678513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506061

RESUMO

Vibrio (V.) vulnificus infection is a rare disease whose death rates exceed 50% despite aggressive antibiotic treatment and surgical debridement. The aim of this study was to assess the ability of specific anti-V. vulnificus immunoglobulins Y (IgYs) for preventing and treating V. vulnificus infections. IgYs were produced by immunizing egg laying hens with inactivated whole cell bacteria. Peritoneal cytokines, blood's bacterial load, and survival curves were obtained from both prophylactic and therapeutic mouse models. The results showed that the specific IgYs (i) inhibited the growth of V. vulnificus in vitro, (ii) dramatically reduced the inflammatory response and blood's bacterial load, and (iii) improved the survival rate of V. vulnificus-infected mice. These results prove that anti-V. vulnificus IgYs can be markedly effective means for the prophylaxis and the therapy of V. vulnificus infections.


Assuntos
Anticorpos Antibacterianos/administração & dosagem , Gema de Ovo/imunologia , Imunoglobulinas/administração & dosagem , Vibrioses/terapia , Vibrio vulnificus/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/isolamento & purificação , Carga Bacteriana , Galinhas , Modelos Animais de Doenças , Gema de Ovo/metabolismo , Gema de Ovo/microbiologia , Feminino , Adjuvante de Freund/administração & dosagem , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/isolamento & purificação , Injeções Intraperitoneais , Masculino , Camundongos , Vibrioses/sangue , Vibrioses/imunologia , Vibrioses/microbiologia , Vibrio vulnificus/isolamento & purificação , Vibrio vulnificus/patogenicidade
17.
J Invest Dermatol ; 141(6): 1573-1584, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33259831

RESUMO

The progression of diabetic complications does not halt despite the termination of hyperglycemia, suggesting a metabolic memory phenomenon. However, whether metabolic memory exists in and affects the healing of diabetic wounds, as well as the underlying molecular mechanisms, remain unclear. In this study, we found that wound healing was delayed, and angiogenesis was decreased in mice with diabetes despite the normalization of glycemic control. Thus, we hypothesized that transient hyperglycemic spikes may be a risk factor for diabetic wound healing. We showed that transient hyperglycemia caused persistent damage to the vascular endothelium. Transient hyperglycemia directly upregulated DNMT1 expression, leading to the hypermethylation of Ang-1 and reduced Ang-1 expression, which in turn induced long-lasting activation of NF-κB and subsequent endothelial dysfunction. An in vivo study further showed that inhibition of DNMT1 promoted angiogenesis and accelerated diabetic wound healing by regulating the Ang-1/NF-κB signaling pathway. These results highlight the dramatic and long-lasting effects of transient hyperglycemic spikes on wound healing and suggest that DNMT1 is a target for diabetic vascular complications.


Assuntos
Glicemia/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Diabetes Mellitus Experimental/complicações , Pé Diabético/patologia , Endotélio Vascular/patologia , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Glicemia/análise , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Pé Diabético/sangue , Humanos , Camundongos , Neovascularização Fisiológica/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Cicatrização/genética
18.
BMC Cancer ; 20(1): 927, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993558

RESUMO

BACKGROUND: Human skin cutaneous melanoma is the most common and dangerous skin tumour, but its pathogenesis is still unclear. Although some progress has been made in genetic research, no molecular indicators related to the treatment and prognosis of melanoma have been found. In various diseases, dysregulation of lncRNA is common, but its role has not been fully elucidated. In recent years, the birth of the "competitive endogenous RNA" theory has promoted our understanding of lncRNAs. METHODS: To identify the key lncRNAs in melanoma, we reconstructed a global triple network based on the "competitive endogenous RNA" theory. Gene Ontology and KEGG pathway analysis were performed using DAVID (Database for Annotation, Visualization, and Integration Discovery). Our findings were validated through qRT-PCR assays. Moreover, to determine whether the identified hub gene signature is capable of predicting the survival of cutaneous melanoma patients, a multivariate Cox regression model was performed. RESULTS: According to the "competitive endogenous RNA" theory, 898 differentially expressed mRNAs, 53 differentially expressed lncRNAs and 16 differentially expressed miRNAs were selected to reconstruct the competitive endogenous RNA network. MALAT1, LINC00943, and LINC00261 were selected as hub genes and are responsible for the tumorigenesis and prognosis of cutaneous melanoma. CONCLUSIONS: MALAT1, LINC00943, and LINC00261 may be closely related to tumorigenesis in cutaneous melanoma. In addition, MALAT1 and LINC00943 may be independent risk factors for the prognosis of patients with this condition and might become predictive molecules for the long-term treatment of melanoma and potential therapeutic targets.


Assuntos
Carcinogênese/genética , Melanoma/genética , RNA Longo não Codificante/genética , Neoplasias Cutâneas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/genética , Prognóstico , RNA Longo não Codificante/classificação , RNA Mensageiro/genética , Melanoma Maligno Cutâneo
19.
Lab Invest ; 100(5): 751-761, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925326

RESUMO

The skin plays a critical role in maintenance of water homeostasis. Dysfunction of the skin barrier causes not only delayed wound healing and hypertrophic scarring, but it also contributes to the development of various skin diseases. Dermatitis is a chronic inflammatory skin disorder that has several different subtypes. Skin of contact dermatitis and atopic dermatitis (AD) show epidermal barrier dysfunction. Nax is a sodium channel that regulates inflammatory gene expression in response to perturbation of barrier function of the skin. We found that in vivo knockdown of Nax using RNAi reduced hyperkeratosis and keratinocyte hyperproliferation in rabbit ear dermatitic skin. Increased infiltration of inflammatory cells (mast cells, eosinophils, T cells, and macrophages), a characteristic of dermatitis, was reduced by Nax knockdown. Upregulation of PAR-2 and thymic stromal lymphopoietin (TSLP), which induce Th2-mediated allergic responses, was inhibited by Nax knockdown. In addition, expression of COX-2, IL-1ß, IL-8, and S100A9, which are downstream genes of Nax and are involved in dermatitis pathogenesis, were also decreased by Nax knockdown. Our data show that knockdown of Nax relieved dermatitis symptoms in vivo and indicate that Nax is a novel therapeutic target for dermatitis, which currently has limited therapeutic options.


Assuntos
Dermatite Atópica , Pele , Canais de Sódio Disparados por Voltagem , Animais , Proliferação de Células/genética , Dermatite Atópica/genética , Dermatite Atópica/patologia , Dermatite Atópica/fisiopatologia , Regulação para Baixo/genética , Eosinófilos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Inflamação/genética , Inflamação/patologia , Inflamação/fisiopatologia , Queratinócitos/metabolismo , Ceratose/genética , Ceratose/patologia , Ceratose/fisiopatologia , Mastócitos/metabolismo , Coelhos , Pele/citologia , Pele/patologia , Pele/fisiopatologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
20.
Am J Transl Res ; 12(12): 8067-8083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437382

RESUMO

The reduced hydration environment induced by disruption of epithelial barrier function after injury results in excessive scarring, but the underlying mechanisms are poorly understood. We demonstrated that exposing keratinocytes to a reduced hydration environment causes epithelial-to-mesenchymal transition (EMT) and induces caveolin-1-dependent downregulation of E-cadherin. Reduced caveolin-1 expression and increased Snail expression are associated with low expression levels of E-cadherin. Caveolin-1 downregulation increases the transcriptional activity of ß-catenin-TCF/LEF-1, and overexpression of caveolin-1 inhibits EMT that results from reduced hydration. Our findings suggest a role for caveolin-1 downregulation in linking aberrant EMT to the reduced hydration environment: findings that may lead to new developments in the prevention and treatment of hypertrophic scar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...