Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 248, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332337

RESUMO

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or national context. Two systematic, quantitative approaches were developed to (1) identify basins that geospatial data suggest are most impacted by nutrients and (2) identify basins that have the most variability in factors affecting nutrient sources and transport in order to prioritize basins for studies that seek to understand the key drivers of nutrient impacts. The "impact" approach relied on geospatial variables representing surface-water and groundwater nutrient concentrations, sources of N and P, and potential impacts on receptors (i.e., ecosystems and human health). The "variability" approach relied on geospatial variables representing surface-water nutrient concentrations, factors affecting sources and transport of nutrients, model accuracy, and potential receptor impacts. One hundred and sixty-three drainage basins throughout the contiguous United States were ranked nationally and within 18 hydrologic regions. Nationally, the top-ranked basins from the impact approach were concentrated in the Midwest, while those from the variability approach were dispersed across the nation. Regionally, the top-ranked basin selected by the two approaches differed in 15 of the 18 regions, with top-ranked basins selected by the variability approach having lower minimum concentrations and larger ranges in concentrations than top-ranked basins selected by the impact approach. The highest ranked basins identified using the variability approach may have advantages for exploring how landscape factors affect surface-water quality and how surface-water quality may affect ecosystems. In contrast, the impact approach prioritized basins in terms of human development and nutrient concentrations in both surface water and groundwater, thereby targeting areas where actions to reduce nutrient concentrations could have the largest effect on improving water availability and reducing ecosystem impacts.


Assuntos
Ecossistema , Rios , Humanos , Monitoramento Ambiental , Eutrofização , Proliferação Nociva de Algas , Nutrientes , Fósforo/análise , Nitrogênio/análise
3.
Environ Sci Technol ; 56(3): 1615-1626, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045246

RESUMO

Metals and polycyclic aromatic hydrocarbons (PAHs) are common pollutants in urban streambed sediment, yet their occurrence is highly variable and difficult to predict. To investigate sources of PAHs and metals to streambed sediment, we sampled pavement dust, soil, and streambed sediment in 10 urban watersheds in three regions of the United States and applied a fallout-radionuclide-based sediment-source analysis to quantify the pavement dust contribution to stream sediment (%dust). We also mapped the area of sealcoated pavement in each watershed (%sealed) to investigate the role of coal-tar pavement sealant (CTS) as a PAH source. Median total and carbon-normalized total PAH concentrations were significantly higher in streambed sediment in the Northeast (54.3 mg/kg and 2.71 mg/gOC) and Southeast (5.37 mg/kg and 1.36 mg/gOC), where CTS is commonly used, than in the Northwest (2.11 mg/kg and 0.071 mg/gOC), where CTS is rarely used. Generalized additive models indicated that %sealed and in some cases %dust significantly affected total PAH concentrations in streambed sediments. The %dust was a significant variable for common urban metals: Cu, Pb, and Zn. These findings advance our quantitative understanding of the role of pavement dust as a source and a vector of contaminants to urban streams.


Assuntos
Alcatrão , Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alcatrão/análise , Poeira/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Sedimentos Geológicos , Metais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 793: 148453, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182445

RESUMO

Pesticides occur in urban streams globally, but the relation of occurrence to urbanization can be obscured by regional differences. In studies of five regions of the United States, we investigated the effect of region and urbanization on the occurrence and potential toxicity of dissolved pesticide mixtures. We analyzed 225 pesticide compounds in weekly discrete water samples collected during 6-12 weeks from 271 wadable streams; development in these basins ranged from undeveloped to highly urbanized. Sixteen pesticides were consistently detected in 16 urban centers across the five regions-we propose that these pesticides comprise a suite of urban signature pesticides (USP) that are all common in small U.S. urban streams. These USPs accounted for the majority of summed maximum pesticide concentrations at urban sites within each urban center. USP concentrations, mixture complexity, and potential toxicity increased with the degree of urbanization in the basin. Basin urbanization explained the most variability in multivariate distance-based models of pesticide profiles, with region always secondary in importance. The USPs accounted for 83% of pesticides in the 20 most frequently occurring 2-compound unique mixtures at urban sites, with carbendazim+prometon the most common. Although USPs were consistently detected in all regions, detection frequencies and concentrations varied by region, conferring differences in potential aquatic toxicity. Potential toxicity was highest for invertebrates (benchmarks exceeded in 51% of urban streams), due most often to the neonicotinoid insecticide imidacloprid and secondarily to organophosphate insecticides and fipronil. Benchmarks were rarely exceeded in urban streams for plants (at 3% of sites) or fish (<1%). We propose that the USPs identified here would make logical core (nonexclusive) constituents for monitoring dissolved pesticides in U.S. urban streams, and that unique mixtures containing imidacloprid, fipronil, and carbendazim are priority candidates for mixtures toxicity testing.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Invertebrados , Praguicidas/análise , Praguicidas/toxicidade , Rios , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 773: 145062, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940714

RESUMO

Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014-2017, the U.S. Geological Survey (USGS) measured 389 unique organic analytes (pharmaceutical, pesticide, organic wastewater indicators) in 305 headwater streams within four contiguous United States (US) regions. Potential aquatic biological effects were evaluated for estimated maximum and median exposure conditions using multiple lines of evidence, including occurrence/concentrations of designed-bioactive pesticides and pharmaceuticals and cumulative risk screening based on vertebrate-centric ToxCast™ exposure-response data and on invertebrate and nonvascular plant aquatic life benchmarks. Mixed-contaminant exposures were ubiquitous and varied, with 78% (304) of analytes detected at least once and cumulative maximum concentrations up to more than 156,000 ng/L. Designed bioactives represented 83% of detected analytes. Contaminant summary metrics correlated strong-positive (rho (ρ): 0.569-0.719) to multiple watershed-development metrics, only weak-positive to point-source discharges (ρ: 0.225-353), and moderate- to strong-negative with multiple instream invertebrate metrics (ρ: -0.373 to -0.652). Risk screening indicated common exposures with high probability of vertebrate-centric molecular effects and of acute toxicity to invertebrates, respectively. The results confirm exposures to broad and diverse contaminant mixtures and provide convincing multiple lines of evidence that chemical contaminants contribute substantially to adverse multi-stressor effects in headwater-stream communities.

6.
Environ Sci Technol ; 54(9): 5509-5519, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32309929

RESUMO

Streambed sediment is commonly analyzed to assess occurrence of hydrophobic pesticides and risks to aquatic communities. However, stream biofilms also have the potential to accumulate pesticides and may be consumed by aquatic organisms. To better characterize risks to aquatic life, the U.S. Geological Survey Regional Stream Quality Assessment measured 93 current-use and 3 legacy pesticides in bed sediment and biofilm from 54 small streams in California across a range of land-use settings. On average, 4 times as many current-use pesticides were detected in biofilm at a site (median of 2) as in sediment (median of 0.5). Of 31 current-use pesticides detected, 20 were detected more frequently in biofilm than in sediment and 10 with equal frequency. Pyrethroids as a class were the most potentially toxic to benthic invertebrates, and of the 9 pyrethroids detected, 7 occurred more frequently in biofilm than sediment. We constructed general additive models to investigate relations between pesticides and 6 metrics of benthic community structure. Pesticides in biofilm improved fit in 4 of the 6 models, and pesticides in sediment improved fit in 2. The results indicate that the sampling of stream biofilms can complement bed-sediment sampling by identification of more current-use pesticides present and better estimation of ecological risks.


Assuntos
Praguicidas/análise , Poluentes Químicos da Água/análise , Animais , Biofilmes , Biota , Monitoramento Ambiental , Rios
7.
PLoS One ; 15(1): e0228214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999738

RESUMO

Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination.


Assuntos
Exposição Ambiental , Preparações Farmacêuticas/análise , Rios , Poluentes Químicos da Água/análise , Animais , Ecossistema , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Humanos , Estados Unidos
8.
Sci Total Environ ; 655: 70-83, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469070

RESUMO

Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Misturas Complexas/toxicidade , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água , Misturas Complexas/análise , Ecossistema , Previsões , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Heliyon ; 4(11): e00904, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450436

RESUMO

The U.S. Geological Survey (USGS) Southeastern Stream Quality Assessment (SESQA) collected weekly samples for nitrogen and phosphorus in 76 wadeable streams in the urbanized Piedmont Ecoregion of the Southeastern United States, during April-June 2014. Total nitrogen (TN) concentrations in excess of U.S. Environmental Protection Agency (EPA) guidelines and statistically greater than at reference locations indicated nitrogen-nutrient enrichment in streams draining poultry confined animal feeding operations (CAFO) or urban centers. Nitrate plus nitrite (NO3 + NO2) dominated TN species in urban/CAFO-influenced streams. Streams that drained poultry CAFO and Washington DC had statistically higher NO3 + NO2 concentrations than streams draining Atlanta, Charlotte, Greenville, or Raleigh. In contrast, total phosphorus (TP) concentrations in Atlanta and Washington DC streams statistically were comparable to and lower than, respectively, reference stream concentrations. Over 50% of TP concentrations in Greenville, Charlotte, Raleigh and CAFO-influenced streams exceeded the EPA guideline and reference-location mean concentrations, indicating phosphorus-nutrient enrichment. Urban land use, permitted point sources, and soil infiltration metrics best predicted TN exceedances. Elevated TN and NO3 + NO2 concentrations in urban streams during low flow were consistent with reduced in-stream dilution of point-source or groundwater contributions. Urban land use, permitted point sources, and surface runoff metrics best predicted TP exceedances. Elevated TP in CAFO and urban streams during high flow were consistent with non-point sources and particulate transport.

10.
Environ Sci Technol ; 51(21): 12443-12454, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043784

RESUMO

Arsenic concentrations from 20 450 domestic wells in the U.S. were used to develop a logistic regression model of the probability of having arsenic >10 µg/L ("high arsenic"), which is presented at the county, state, and national scales. Variables representing geologic sources, geochemical, hydrologic, and physical features were among the significant predictors of high arsenic. For U.S. Census blocks, the mean probability of arsenic >10 µg/L was multiplied by the population using domestic wells to estimate the potential high-arsenic domestic-well population. Approximately 44.1 M people in the U.S. use water from domestic wells. The population in the conterminous U.S. using water from domestic wells with predicted arsenic concentration >10 µg/L is 2.1 M people (95% CI is 1.5 to 2.9 M). Although areas of the U.S. were underrepresented with arsenic data, predictive variables available in national data sets were used to estimate high arsenic in unsampled areas. Additionally, by predicting to all of the conterminous U.S., we identify areas of high and low potential exposure in areas of limited arsenic data. These areas may be viewed as potential areas to investigate further or to compare to more detailed local information. Linking predictive modeling to private well use information nationally, despite the uncertainty, is beneficial for broad screening of the population at risk from elevated arsenic in drinking water from private wells.


Assuntos
Arsênio , Poluentes Químicos da Água , Poços de Água , Modelos Logísticos , Estados Unidos , Abastecimento de Água
11.
Environ Sci Technol ; 46(11): 6004-12, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22582987

RESUMO

Recently recharged water (defined here as <60 years old) is generally the most vulnerable part of a groundwater resource to nonpoint-source nitrate contamination. Understanding at the appropriate scale the interactions of natural and anthropogenic controlling factors that influence nitrate occurrence in recently recharged groundwater is critical to support best management and policy decisions that are often made at the aquifer to subaquifer scale. New logistic regression models were developed using data from the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program and National Water Information System for 17 principal aquifers of the U.S. to identify important source, transport, and attenuation factors that control nonpoint source nitrate concentrations greater than relative background levels in recently recharged groundwater and were used to predict the probability of detecting elevated nitrate in areas beyond the sampling network. Results indicate that dissolved oxygen, crops and irrigated cropland, fertilizer application, seasonally high water table, and soil properties that affect infiltration and denitrification are among the most important factors in predicting elevated nitrate concentrations. Important differences in controlling factors and spatial predictions were identified in the principal aquifer and national-scale models and support the conclusion that similar spatial scales are needed between informed groundwater management and model development.


Assuntos
Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Modelos Logísticos , Movimento (Física) , Estados Unidos
12.
Ground Water ; 45(3): 348-61, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17470124

RESUMO

A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability.


Assuntos
Movimentos da Água , Abastecimento de Água/análise , Modelos Logísticos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...