Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Aging Neurosci ; 16: 1345251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721017

RESUMO

Objective: To investigate the abnormalities of the three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) based cerebral blood flow (CBF) correlation networks in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Methods: 3D PCASL images of 53 cognitive normal (CN) subjects, 43 subjects with MCI, and 30 subjects with AD were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Whole-brain CBF maps were calculated using PCASL and proton density-weighted images (PDWI). The 246 regional CBF values, including the cortex and subcortex, were obtained after registering the Brainnetome Atlas to the individual CBF maps. The Pearson correlation coefficient between every two regions across subjects was calculated to construct the CBF correlation network. Then the topologies of CBF networks with regard to global properties (global network efficiency, clustering coefficient, characteristic path length, and small-world properties), hub regions, nodal properties (betweenness centrality, BC), and connections were compared among CN, MCI, and AD. Significant changes in the global and nodal properties were observed in the permutation tests, and connections with significant differences survived after the z-statistic and false discovery rate (FDR) correction. Results: The CBF correlation networks of CN, MCI, and AD all showed small-world properties. Compared with CN, global efficiency decreased significantly in AD. Significant differences in nodal properties and a loss of hub regions are noted in the middle temporal lobe in both MCI and AD. In the frontal lobe, BC is reduced in MCI while it is increased in the occipital lobe in AD. The identified altered hub regions with significant differences in MCI and AD were mainly distributed in the hippocampus and entorhinal cortex. In addition, disrupted hub regions in AD with significantly decreased connections were mainly found in the precuneus/posterior cingulate cortex (PCC) and hippocampus-cortical cortex. Conclusions: Noninvasive 3D PCASL-based CBF correlation networks are capable of showing changes in topological organization in subjects with MCI and AD, and the observed disruption in the topological organization may underlie cognitive decline in MCI and AD.

2.
Med Biol Eng Comput ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664348

RESUMO

In the contemporary era, artificial intelligence (AI) has undergone a transformative evolution, exerting a profound influence on neuroimaging data analysis. This development has significantly elevated our comprehension of intricate brain functions. This study investigates the ramifications of employing AI techniques on neuroimaging data, with a specific objective to improve diagnostic capabilities and contribute to the overall progress of the field. A systematic search was conducted in prominent scientific databases, including PubMed, IEEE Xplore, and Scopus, meticulously curating 456 relevant articles on AI-driven neuroimaging analysis spanning from 2013 to 2023. To maintain rigor and credibility, stringent inclusion criteria, quality assessments, and precise data extraction protocols were consistently enforced throughout this review. Following a rigorous selection process, 104 studies were selected for review, focusing on diverse neuroimaging modalities with an emphasis on mental and neurological disorders. Among these, 19.2% addressed mental illness, and 80.7% focused on neurological disorders. It is found that the prevailing clinical tasks are disease classification (58.7%) and lesion segmentation (28.9%), whereas image reconstruction constituted 7.3%, and image regression and prediction tasks represented 9.6%. AI-driven neuroimaging analysis holds tremendous potential, transforming both research and clinical applications. Machine learning and deep learning algorithms outperform traditional methods, reshaping the field significantly.

3.
Heliyon ; 10(1): e23605, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187332

RESUMO

Focal cortical dysplasia (FCD) is a neurological disorder distinguished by faulty brain cell structure and development. Repetitive and uncontrollable seizures may be linked to FCD's aberrant cortical thickness, gyrification, and sulcal depth. Quantitative cortical surface analysis is a crucial alternative to ineffective visual inspection. This study recruited 42 subjects including 22 FCD patients who underwent surgery and 20 healthy controls (HC). For the FCD patients, T1-weighted and PET images were obtained by a PET-MRI scanner, and the confirmed epileptogenic zone (EZ) was collected from postsurgical follow-up. For the HCs, CT and PET images were obtained by a PET-CT scanner. Cortical thickness, gyrification index, and sulcal depth were calculated using a computational anatomical toolbox (CAT12). A cluster-based analysis is carried out to determine each FCD patient's aberrant cortical surface. After parcellating the cerebral cortex into 68 regions by the Desikan-Killiany atlas, a region of interest (ROI) analysis was conducted to know whether the feature in the FCD group is significantly different from that in the HC group. Finally, the features of all ROIs were utilised to train a support vector machine classifier (SVM). The classification performance is evaluated by the leave-one-out cross-validation. The cluster-based analysis can localize the EZ cluster with the highest accuracy of 54.5 % (12/22) for cortical thickness, 40.9 % (9/22) and 13.6 % (3/22) for sulcal depth and gyrification, respectively. Moderate concordance (Kappa, 0.6) is observed between the confirmed EZs and identified clusters by using the cortical thickness. Fair concordance (Kappa, 0.3) and no concordance (Kappa, 0.1) is found by using sulcal depth and gyrification. Significant differences are found in 46 of 68 regions (67.7 %) for the three measures. The trained SVM classifier achieved a prediction accuracy of 95.5 % for the cortical thickness, while the sulcal depth and the gyrification obtained 86.0 % and 81.5 %. Cortical thickness, as determined by quantitative cortical surface analysis of PET data, has a greater ability than sulcal depth and gyrification to locate aberrant EZ clusters in FCD. Surface measures might be different in many regions for FCD and HC. By integrating machine learning and cortical morphologies features, individual prediction of FCD seems to be feasible.

5.
BMC Med Imaging ; 23(1): 205, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066434

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in men worldwide, and its timely diagnosis and treatment are becoming increasingly important. MRI is in increasing use to diagnose cancer and to distinguish between non-clinically significant and clinically significant PCa, leading to more precise diagnosis and treatment. The purpose of this study is to present a radiomics-based method for determining the Gleason score (GS) for PCa using tumour heterogeneity on multiparametric MRI (mp-MRI). METHODS: Twenty-six patients with biopsy-proven PCa were included in this study. The quantitative T2 values, apparent diffusion coefficient (ADC) and signal enhancement rates (α) were calculated using multi-echo T2 images, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI), for the annotated region of interests (ROI). After texture feature analysis, ROI range expansion and feature filtering was performed. Then obtained data were put into support vector machine (SVM), K-Nearest Neighbor (KNN) and other classifiers for binary classification. RESULTS: The highest classification accuracy was 73.96% for distinguishing between clinically significant (Gleason 3 + 4 and above) and non-significant cancers (Gleason 3 + 3) and 83.72% for distinguishing between Gleason 3 + 4 from Gleason 4 + 3 and above, which was achieved using initial ROIs drawn by the radiologists. The accuracy improved when using expanded ROIs to 80.67% using SVM and 88.42% using Bayesian classification for distinguishing between clinically significant and non-significant cancers and Gleason 3 + 4 from Gleason 4 + 3 and above, respectively. CONCLUSIONS: Our results indicate the research significance and value of this study for determining the GS for prostate cancer using the expansion of the ROI region.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Gradação de Tumores , Teorema de Bayes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos
6.
Sci Rep ; 13(1): 23021, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155293

RESUMO

To predict massive cerebral infarction (MCI) occurrence after anterior circulation occlusion (ACO) by cASPECTS-CTA-CS (combined ASPECTS and CTA-CS). Of 185 cerebral infarction patients with the ACO, their collateral circulation scores from CT angiography (CTA) images in two groups (MCI and non-MCI) were evaluated using Alberta Stroke Program Early CT Score (ASPECTS) and CT angiography collateral score (CTA-CS) approaches. The cASPECTS-CTA-CS was validated internally using the bootstrap sampling method with 1000 bootstrap repetitions and compared to CTA-CS. Receiver-operating characteristic curve (ROC), clinical impact curve (CIC), and decision curve analysis (DCA) strategies were used to assess the clinical practicality and predictability of both approaches (cASPECTS-CTA-CS and CTA-CS). Using net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses, discrimination levels of the cASPECTS-CTA-CS were compared with CTA-CS. Classification and regression tree (CART) analyses was conducted to identify the best predictive values and identify subgroup of MCI. The discrimination ability of collateral circulation evaluation score using the cASPECTS-CTA-CS [AUC: 0.918, 95% confidence interval (CI): 0.869-0.967, P < 0.01; NRI: 0.200, 95% CI: -0.104 to 0.505, P = 0.197; and IDI: 0.107, 95% CI: 0.035-0.178, P = 0.004] was better than CTA-CS alone (AUC: 0.885, 95% CI: 0.833-0.937, P < 0.01). DCA indicated the net benefits of the cASPECTS-CTA-CS approach was higher than CTA-CS alone when the threshold probability range over 20%. CIC analyses showed that the number of high risks and true positives were in agreement when the threshold probability > 80%. Less than 23 of cASPECTS-CTA-CS by CART was important factor in determining MCI occurrence, and ASPECTS < 7 was followed factor. The cASPECTS-CTA-CS approach cumulatively predicted MCI after ACO.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Angiografia Cerebral/métodos , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/etiologia , Angiografia por Tomografia Computadorizada/métodos , Circulação Cerebrovascular , Estudos Retrospectivos
7.
Cancer Imaging ; 23(1): 101, 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37867196

RESUMO

OBJECTIVES: This study aims to establish nomograms to accurately predict the overall survival (OS) and progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) who received chemotherapy alone as the first-line treatment. MATERIALS AND METHODS: In a training cohort of 121 NSCLC patients, radiomic features were extracted, selected from intra- and peri-tumoral regions, and used to build signatures (S1 and S2) using a Cox regression model. Deep learning features were obtained from three convolutional neural networks and utilized to build signatures (S3, S4, and S5) that were stratified into over- and under-expression subgroups for survival risk using X-tile. After univariate and multivariate Cox regression analyses, a nomogram incorporating the tumor, node, and metastasis (TNM) stages, radiomic signature, and deep learning signature was established to predict OS and PFS, respectively. The performance was validated using an independent cohort (61 patients). RESULTS: TNM stages, S2 and S3 were identified as the significant prognosis factors for both OS and PFS; S2 (OS: (HR (95%), 2.26 (1.40-3.67); PFS: (HR (95%), 2.23 (1.36-3.65)) demonstrated the best ability in discriminating patients with over- and under-expression. For the OS nomogram, the C-index (95% CI) was 0.74 (0.70-0.79) and 0.72 (0.67-0.78) in the training and validation cohorts, respectively; for the PFS nomogram, the C-index (95% CI) was 0.71 (0.68-0.81) and 0.72 (0.66-0.79). The calibration curves for the 3- and 5-year OS and PFS were in acceptable agreement between the predicted and observed survival. The established nomogram presented a higher overall net benefit than the TNM stage for predicting both OS and PFS. CONCLUSION: By integrating the TNM stage, CT radiomic signature, and deep learning signatures, the established nomograms can predict the individual prognosis of NSCLC patients who received chemotherapy. The integrated nomogram has the potential to improve the individualized treatment and precise management of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Nomogramas , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Intervalo Livre de Progressão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Prognóstico , Tomografia Computadorizada por Raios X/métodos
8.
Front Aging Neurosci ; 15: 1237198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719871

RESUMO

Objective: White matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach. Methods: High-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction. Results: Disconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's. Conclusion: Changes in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.

9.
Comput Biol Med ; 165: 107471, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37716245

RESUMO

BACKGROUND AND OBJECTIVE: Acute ischemic stroke (AIS) is a common neurological disorder characterized by the sudden onset of cerebral ischemia, leading to functional impairments. Swift and precise detection of AIS lesions is crucial for stroke diagnosis and treatment but poses a significant challenge. This study aims to leverage multimodal fusion technology to combine complementary information from various modalities, thereby enhancing the detection performance of AIS target detection models. METHODS: In this retrospective study of AIS, we collected data from 316 AIS patients and created a multi-modality magnetic resonance imaging (MRI) dataset. We propose a Multi-Scale Attention-based YOLOv5 (MSA-YOLOv5), targeting challenges such as small lesion size and blurred borders at low resolutions. Specifically, we augment YOLOv5 with a prediction head to detect objects at various scales. Next, we replace the original prediction head with a Multi-Scale Swin Transformer Prediction Head (MS-STPH), which reduces computational complexity to linear levels and enhances the ability to detect small lesions. We incorporate a Second-Order channel attention (SOCA) module to adaptively rescale channel features by employing second-order feature statistics for more discriminative representations. Finally, we further validate the effectiveness of our method using the ISLES 2022 dataset. RESULTS: On our in-house AIS dataset, MSA-YOLOv5 achieves a 79.0% mAP0.5, substantially surpassing other single-stage models. Compared to two-stage models, it maintains a comparable performance level while significantly reducing the number of parameters and resolution. On the ISLES 2022 dataset, MSA-YOLOv5 attains an 80.0% mAP0.5, outperforming other network models by a considerable margin. MS-STPH and SOCA modules can significantly increase mAP0.5 by 2.7% and 1.9%, respectively. Visualization interpretability results show that the proposed MSA-YOLOv5 restricts high attention in the small regions of AIS lesions. CONCLUSIONS: The proposed MSA-YOLOv5 is capable of automatically and effectively detecting acute ischemic stroke lesions in multimodal images, particularly for small lesions and artifacts. Our enhanced model reduces the number of parameters while improving detection accuracy. This model can potentially assist radiologists in providing more accurate diagnosis, and enable clinicians to develop better treatment plans.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem , Artefatos
10.
Artif Intell Med ; 143: 102637, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673569

RESUMO

Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
11.
Med Biol Eng Comput ; 61(11): 3049-3066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615846

RESUMO

Lobectomy is an effective and well-established therapy for localized lung cancer. This study aimed to assess the lung and lobe change after lobectomy and predict the postoperative lung volume. The study included 135 lung cancer patients from two hospitals who underwent lobectomy (32, right upper lobectomy (RUL); 31, right middle lobectomy (RML); 24, right lower lobectomy (RLL); 26, left upper lobectomy (LUL); 22, left lower lobectomy (LLL)). We initially employ a convolutional neural network model (nnU-Net) for automatically segmenting pulmonary lobes. Subsequently, we assess the volume, effective lung volume (ELV), and attenuation distribution for each lobe as well as the entire lung, before and after lobectomy. Ultimately, we formulate a machine learning model, incorporating linear regression (LR) and multi-layer perceptron (MLP) methods, to predict the postoperative lung volume. Due to the physiological compensation, the decreased TLV is about 10.73%, 8.12%, 13.46%, 11.47%, and 12.03% for the RUL, RML, RLL, LUL, and LLL, respectively. The attenuation distribution in each lobe changed little for all types of lobectomy. LR and MLP models achieved a mean absolute percentage error of 9.8% and 14.2%, respectively. Radiological findings and a predictive model of postoperative lung volume might help plan the lobectomy and improve the prognosis.


Assuntos
Neoplasias Pulmonares , Pulmão , Pneumonectomia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Prognóstico , Tórax , Tomografia Computadorizada por Raios X
12.
J Xray Sci Technol ; 31(5): 981-999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424490

RESUMO

BACKGROUND: Pulmonary granulomatous nodules (GN) with spiculation or lobulation have a similar morphological appearance to solid lung adenocarcinoma (SADC) under computed tomography (CT). However, these two kinds of solid pulmonary nodules (SPN) have different malignancies and are sometimes misdiagnosed. OBJECTIVE: This study aims to predict malignancies of SPNs by a deep learning model automatically. METHODS: A chimeric label with self-supervised learning (CLSSL) is proposed to pre-train a ResNet-based network (CLSSL-ResNet) for distinguishing isolated atypical GN from SADC in CT images. The malignancy, rotation, and morphology labels are integrated into a chimeric label and utilized to pre-train a ResNet50. The pre-trained ResNet50 is then transferred and fine-tuned to predict the malignancy of SPN. Two image datasets of 428 subjects (Dataset1, 307; Dataset2, 121) from different hospitals are collected. Dataset1 is divided into training, validation, and test data by a ratio of 7:1:2 to develop the model. Dataset2 is utilized as an external validation dataset. RESULTS: CLSSL-ResNet achieves an area under the ROC curve (AUC) of 0.944 and an accuracy (ACC) of 91.3%, which was much higher than that of the consensus of two experienced chest radiologists (77.3%). CLSSL-ResNet also outperforms other self-supervised learning models and many counterparts of other backbone networks. In Dataset2, AUC and ACC of CLSSL-ResNet are 0.923 and 89.3%, respectively. Additionally, the ablation experiment result indicates higher efficiency of the chimeric label. CONCLUSION: CLSSL with morphology labels can increase the ability of feature representation by deep networks. As a non-invasive method, CLSSL-ResNet can distinguish GN from SADC via CT images and may support clinical diagnoses after further validation.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Aprendizado de Máquina Supervisionado
13.
Med Biol Eng Comput ; 61(10): 2649-2663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37420036

RESUMO

Transformer-based methods have led to the revolutionizing of multiple computer vision tasks. Inspired by this, we propose a transformer-based network with a channel-enhanced attention module to explore contextual and spatial information in non-contrast (NC) and contrast-enhanced (CE) computed tomography (CT) images for pulmonary vessel segmentation and artery-vein separation. Our proposed network employs a 3D contextual transformer module in the encoder and decoder part and a double attention module in skip connection to effectively finish high-quality vessel and artery-vein segmentation. Extensive experiments are conducted on the in-house dataset and the ISICDM2021 challenge dataset. The in-house dataset includes 56 NC CT scans with vessel annotations and the challenge dataset consists of 14 NC and 14 CE CT scans with vessel and artery-vein annotations. For vessel segmentation, Dice is 0.840 for CE CT and 0.867 for NC CT. For artery-vein separation, the proposed method achieves a Dice of 0.758 of CE images and 0.602 of NC images. Quantitative and qualitative results demonstrated that the proposed method achieved high accuracy for pulmonary vessel segmentation and artery-vein separation. It provides useful support for further research associated with the vascular system in CT images. The code is available at https://github.com/wuyanan513/Pulmonary-Vessel-Segmentation-and-Artery-vein-Separation .


Assuntos
Fontes de Energia Elétrica , Tomografia Computadorizada por Raios X , Artérias , Processamento de Imagem Assistida por Computador
14.
Transl Oncol ; 35: 101719, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37320871

RESUMO

BACKGROUND: The prognosis of chemotherapy is important in clinical decision-making for non-small cell lung cancer (NSCLC) patients. OBJECTIVES: To develop a model for predicting treatment response to chemotherapy in NSCLC patients from pre-chemotherapy CT images. MATERIALS AND METHODS: This retrospective multicenter study enrolled 485 patients with NSCLC who received chemotherapy alone as a first-line treatment. Two integrated models were developed using radiomic and deep-learning-based features. First, we partitioned pre-chemotherapy CT images into spheres and shells with different radii around the tumor (0-3, 3-6, 6-9, 9-12, 12-15 mm) containing intratumoral and peritumoral regions. Second, we extracted radiomic and deep-learning-based features from each partition. Third, using radiomic features, five sphere-shell models, one feature fusion model, and one image fusion model were developed. Finally, the model with the best performance was validated in two cohorts. RESULTS: Among the five partitions, the model of 9-12 mm achieved the highest area under the curve (AUC) of 0.87 (95% confidence interval: 0.77-0.94). The AUC was 0.94 (0.85-0.98) for the feature fusion model and 0.91 (0.82-0.97) for the image fusion model. For the model integrating radiomic and deep-learning-based features, the AUC was 0.96 (0.88-0.99) for the feature fusion method and 0.94 (0.85-0.98) for the image fusion method. The best-performing model had an AUC of 0.91 (0.81-0.97) and 0.89 (0.79-0.93) in two validation sets, respectively. CONCLUSIONS: This integrated model can predict the response to chemotherapy in NSCLC patients and assist physicians in clinical decision-making.

15.
Front Neurosci ; 17: 1163111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152592

RESUMO

Objective: Epilepsy is considered as a neural network disorder. Seizure activity in epilepsy may disturb brain networks and damage brain functions. We propose using resting-state functional magnetic resonance imaging (rs-fMRI) data to characterize connectivity patterns in drug-resistant epilepsy. Methods: This study enrolled 47 participants, including 28 with drug-resistant epilepsy and 19 healthy controls. Functional and effective connectivity was employed to assess drug-resistant epilepsy patients within resting state networks. The resting state functional connectivity (FC) analysis was performed to assess connectivity between each patient and healthy controls within the default mode network (DMN) and the dorsal attention network (DAN). In addition, dynamic causal modeling was used to compute effective connectivity (EC). Finally, a statistical analysis was performed to evaluate our findings. Results: The FC analysis revealed significant connectivity changes in patients giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical analysis of FC was significant between the medial prefrontal cortex, posterior cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was significant between the left and the right intraparietal sulcus and the frontal eye field. For the DMN, the patient group showed significant EC connectivity in the right inferior parietal cortex and the medial prefrontal cortex for the DMN. There was also bilateral connectivity between the medial prefrontal cortex and the posterior cingulate cortex, as well as between the left and right inferior parietal cortex. For DAN, patients showed significant connectivity in the right frontal eye field and the right intraparietal sulcus. Bilateral connectivity was also found between the left frontal eye field and the left intraparietal sulcus, as well as between the right frontal eye field and the right intraparietal sulcus. The statistical analysis of the EC revealed a significant result in the medial prefrontal cortex and the right intraparietal cortex for the DMN. The DAN was found significant in the left frontal eye field, as well as the left and right intraparietal sulcus. Conclusion: Our results provide preliminary evidence to support that the combination of functional and effective connectivity analysis of rs-fMRI can aid in diagnosing epilepsy in the DMN and DAN networks.

16.
Brain Imaging Behav ; 17(4): 375-385, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243751

RESUMO

The pathophysiological mechanisms at work in Parkinson's disease (PD) patients with freezing of gait (FOG) remain poorly understood. Functional connectivity density (FCD) could provide an unbiased way to analyse connectivity across the brain. In this study, a total of 23 PD patients with FOG (PD FOG + patients), 26 PD patients without FOG (PD FOG- patients), and 22 healthy controls (HCs) were recruited, and their resting-state functional magnetic resonance imaging (rs-fMRI) images were collected. FCD mapping was first performed to identify differences between groups. Pearson correlation analysis was used to explore relationships between FCD values and the severity of FOG. Then, a machine learning model was employed to classify each pair of groups. PD FOG + patients showed significantly increased short-range FCD in the precuneus, cingulate gyrus, and fusiform gyrus and decreased long-range FCD in the frontal gyrus, temporal gyrus, and cingulate gyrus. Short-range FCD values in the middle temporal gyrus and inferior temporal gyrus were positively correlated with FOG questionnaire (FOGQ) scores, and long-range FCD values in the middle frontal gyrus were negatively correlated with FOGQ scores. Using FCD in abnormal regions as input, a support vector machine (SVM) classifier can achieve classification with good performance. The mean accuracy values were 0.895 (PD FOG + vs. HC), 0.966 (PD FOG- vs. HC), and 0.897 (PD FOG + vs. PD FOG-). This study demonstrates that PD FOG + patients showed altered short- and long-range FCD in several brain regions involved in action planning and control, motion processing, emotion, cognition, and object recognition.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/patologia , Vias Neurais , Imageamento por Ressonância Magnética , Marcha
17.
Front Neurosci ; 17: 1133933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008204

RESUMO

Objective: This study proposes a new hybrid brain-computer interface (BCI) system to improve spelling accuracy and speed by stimulating P300 and steady-state visually evoked potential (SSVEP) in electroencephalography (EEG) signals. Methods: A frequency enhanced row and column (FERC) paradigm is proposed to incorporate the frequency coding into the row and column (RC) paradigm so that the P300 and SSVEP signals can be evoked simultaneously. A flicker (white-black) with a specific frequency from 6.0 to 11.5 Hz with an interval of 0.5 Hz is assigned to one row or column of a 6 × 6 layout, and the row/column flashes are carried out in a pseudorandom sequence. A wavelet and support vector machine (SVM) combination is adopted for P300 detection, an ensemble task-related component analysis (TRCA) method is used for SSVEP detection, and the two detection possibilities are fused using a weight control approach. Results: The implemented BCI speller achieved an accuracy of 94.29% and an information transfer rate (ITR) of 28.64 bit/min averaged across 10 subjects during the online tests. An accuracy of 96.86% is obtained during the offline calibration tests, higher than that of only using P300 (75.29%) or SSVEP (89.13%). The SVM in P300 outperformed the previous linear discrimination classifier and its variants (61.90-72.22%), and the ensemble TRCA in SSVEP outperformed the canonical correlation analysis method (73.33%). Conclusion: The proposed hybrid FERC stimulus paradigm can improve the performance of the speller compared with the classical single stimulus paradigm. The implemented speller can achieve comparable accuracy and ITR to its state-of-the-art counterparts with advanced detection algorithms.

18.
Front Psychiatry ; 14: 1084443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873202

RESUMO

Background: As one of the most common diseases, major depressive disorder (MDD) has a significant adverse impact on the li of patients. As a mild form of depression, subclinical depression (SD) serves as an indicator of progression to MDD. This study analyzed the degree centrality (DC) for MDD, SD, and healthy control (HC) groups and identified the brain regions with DC alterations. Methods: The experimental data were composed of resting-state functional magnetic resonance imaging (rs-fMRI) from 40 HCs, 40 MDD subjects, and 34 SD subjects. After conducting a one-way analysis of variance, two-sample t-tests were used for further analysis to explore the brain regions with changed DC. Receiver operating characteristic (ROC) curve analysis of single index and composite index features was performed to analyze the distinguishable ability of important brain regions. Results: For the comparison of MDD vs. HC, increased DC was found in the right superior temporal gyrus (STG) and right inferior parietal lobule (IPL) in the MDD group. For SD vs. HC, the SD group showed a higher DC in the right STG and the right middle temporal gyrus (MTG), and a smaller DC in the left IPL. For MDD vs. SD, increased DC in the right middle frontal gyrus (MFG), right IPL, and left IPL, and decreased DC in the right STG and right MTG was found in the MDD group. With an area under the ROC (AUC) of 0.779, the right STG could differentiate MDD patients from HCs and, with an AUC of 0.704, the right MTG could differentiate MDD patients from SD patients. The three composite indexes had good discriminative ability in each pairwise comparison, with AUCs of 0.803, 0.751, and 0.814 for MDD vs. HC, SD vs. HC, and MDD vs. SD, respectively. Conclusion: Altered DC in the STG, MTG, IPL, and MFG were identified in depression groups. The DC values of these altered regions and their combinations presented good discriminative ability between HC, SD, and MDD. These findings could help to find effective biomarkers and reveal the potential mechanisms of depression.

19.
Front Microbiol ; 14: 1084312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891388

RESUMO

Nowadays, the detection of environmental microorganism indicators is essential for us to assess the degree of pollution, but the traditional detection methods consume a lot of manpower and material resources. Therefore, it is necessary for us to make microbial data sets to be used in artificial intelligence. The Environmental Microorganism Image Dataset Seventh Version (EMDS-7) is a microscopic image data set that is applied in the field of multi-object detection of artificial intelligence. This method reduces the chemicals, manpower and equipment used in the process of detecting microorganisms. EMDS-7 including the original Environmental Microorganism (EM) images and the corresponding object labeling files in ".XML" format file. The EMDS-7 data set consists of 41 types of EMs, which has a total of 2,65 images and 13,216 labeled objects. The EMDS-7 database mainly focuses on the object detection. In order to prove the effectiveness of EMDS-7, we select the most commonly used deep learning methods (Faster-Region Convolutional Neural Network (Faster-RCNN), YOLOv3, YOLOv4, SSD, and RetinaNet) and evaluation indices for testing and evaluation. EMDS-7 is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/EMDS-7_DataSet/16869571.

20.
Front Med (Lausanne) ; 10: 1114673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760405

RESUMO

Background and purpose: Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide. Timely detection of cancer in its early stages is essential for treating the disease. Currently, there is a lack of datasets for histopathological image segmentation of colorectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis. Methods: This present study provided a new publicly available Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the experimental results for EBHI-Seg are evaluated using classical machine learning methods and deep learning methods. Results: The experimental results showed that deep learning methods had a better image segmentation performance when utilizing EBHI-Seg. The maximum accuracy of the Dice evaluation metric for the classical machine learning method is 0.948, while the Dice evaluation metric for the deep learning method is 0.965. Conclusion: This publicly available dataset contained 4,456 images of six types of tumor differentiation stages and the corresponding ground truth images. The dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients. EBHI-Seg is publicly available at: https://figshare.com/articles/dataset/EBHI-SEG/21540159/1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...