Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523343

RESUMO

BACKGROUND: Optimizing biochar application is vital for enhancing crop production and ensuring sustainable agricultural production. A 3-year field experiment was established to explore the effects of varying the biochar application rate (BAR) on crop growth, quality, productivity and yields. BAR was set at 0, 10, 50 and 100 t ha-1 in 2018; 0, 10, 25, 50 and 100 t ha-1 in 2019; and 0, 10, 25 and 30 t ha-1 in 2020. Crop quality and growth status and production were evaluated using the dynamic technique for order preference by similarity to ideal solution with the entropy weighted method (DTOPSIS-EW), principal component analysis (PCA), membership function analysis (MFA), gray relation analysis (GRA) and the fuzzy Borda combination evaluation method. RESULTS: Low-dose BAR (≤ 25 t ha-1 for cotton; ≤ 50 t ha-1 for sugar beet) effectively increased biomass, plant height, leaf area index (LAI), water and fertility (N, P and K) productivities, and yield. Biochar application increased the salt absorption and sugar content in sugar beet, with the most notable increases being 116.45% and 20.35%, respectively. Conversely, BAR had no significant effect on cotton fiber quality. The GRA method was the most appropriate for assessing crop growth and quality. The most indicative parameters for reflecting cotton and sugarbeet growth and quality status were biomass and LAI. The 10 t ha-1 BAR consistently produced the highest scores and was the most economically viable option, as evaluated by DTOPSIS-EW. CONCLUSION: The optimal biochar application strategy for improving cotton and sugar beet cultivation in Xinjiang, China, is 10 t ha-1 biochar applied continuously. © 2024 Society of Chemical Industry.

2.
J Vis Exp ; (195)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246859

RESUMO

In eukaryotic cells, membrane components, including proteins and lipids, are spatiotemporally transported to their destination within the endomembrane system. This includes the secretory transport of newly synthesized proteins to the cell surface or the outside of the cell, the endocytic transport of extracellular cargoes or plasma membrane components into the cell, and the recycling or shuttling transport of cargoes between the subcellular organelles, etc. Membrane trafficking events are crucial to the development, growth, and environmental adaptation of all eukaryotic cells and, thus, are under stringent regulation. Cell-surface receptor kinases, which perceive ligand signals from the extracellular space, undergo both secretory and endocytic transport. Commonly used approaches to study the membrane trafficking events using a plasma membrane-localized leucine-rich-repeat receptor kinase, ERL1, are described here. The approaches include plant material preparation, pharmacological treatment, and confocal imaging setup. To monitor the spatiotemporal regulation of ERL1, this study describes the co-localization analysis between ERL1 and a multi-vesicular body marker protein, RFP-Ara7, the time series analysis of these two proteins, and the z-stack analysis of ERL1-YFP treated with the membrane trafficking inhibitors brefeldin A and wortmannin.


Assuntos
Endocitose , Projetos de Pesquisa , Transporte Biológico , Brefeldina A , Membrana Celular , Membranas , Transporte Proteico
3.
Geroscience ; 45(4): 2135-2143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36856945

RESUMO

Age-associated diseases are becoming progressively more prevalent, reflecting the increased lifespan of the world's population. However, the fundamental mechanisms of physiologic aging are poorly understood, and in particular, the molecular pathways that mediate cardiac aging and its associated dysfunction are unclear. Here, we focus on certain ion flux abnormalities of the mitochondria that may contribute to cardiac aging and age-related heart failure. Using oxidative phosphorylation, mitochondria pump protons from the matrix to the intermembrane space to generate a proton gradient across the inner membrane. The protons are returned to the matrix by the ATPase complex within the membrane to generate ATP. However, a portion of protons leak back to the matrix and do not drive ATP production, and this event is called proton leak or uncoupling. Accumulating evidence suggests that mitochondrial proton leak is increased in the cardiac myocytes of aged hearts. In this mini-review, we discuss the measurement methods and major sites of mitochondrial proton leak with an emphasis on the adenine nucleotide transporter 1 (ANT1), and explore the possibility of inhibiting augmented mitochondrial proton leak as a therapeutic intervention to mitigate cardiac aging.


Assuntos
Canais Iônicos , Prótons , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Front Plant Sci ; 12: 751852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707632

RESUMO

Stomata are micropores that allow plants to breathe and play a critical role in photosynthesis and nutrient uptake by regulating gas exchange and transpiration. Stomatal development, therefore, is optimized for survival and growth of the plant despite variable environmental conditions. Signaling cascades and transcriptional networks that determine the birth, proliferation, and differentiation of a stomate have been identified. These networks ensure proper stomatal patterning, density, and polarity. Environmental cues also influence stomatal development. In this review, we highlight recent findings regarding the developmental program governing cell fate and dynamics of stomatal lineage cells at the cell state- or single-cell level. We also overview the control of stomatal development by environmental cues as well as developmental plasticity associated with stomatal function and physiology. Recent advances in our understanding of stomatal development will provide a route to improving photosynthesis and water-stress resilience of crop plants in the climate change we currently face.

5.
Nat Commun ; 11(1): 5510, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139737

RESUMO

In living cells, dynamics of the endoplasmic reticulum (ER) are driven by the cytoskeleton motor machinery as well as the action of ER-shaping proteins such as atlastin GTPases including RHD3 in Arabidopsis. It is not known if the two systems interplay, and, if so, how they do. Here we report the identification of ARK1 (Armadillo-Repeat Kinesin1) via a genetic screen for enhancers of the rhd3 mutant phenotype. In addition to defects in microtubule dynamics, ER organization is also defective in mutants lacking a functional ARK1. In growing root hair cells, ARK1 comets predominantly localize on the growing-end of microtubules and partially overlap with RHD3 in the cortex of the subapical region. ARK1 co-moves with RHD3 during tip growth of root hair cells. We show that there is a functional interdependence between ARK1 and RHD3. ARK1 physically interacts with RHD3 via its armadillo domain (ARM). In leaf epidermal cells where a polygonal ER network can be resolved, ARK1, but not ARK1ΔARM, moves together with RHD3 to pull an ER tubule toward another and stays with the newly formed 3-way junction of the ER for a while. We conclude that ARK1 acts together with RHD3 to move the ER on microtubules to generate a fine ER network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas do Domínio Armadillo , Proteínas de Ligação ao GTP/genética , Mutação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
6.
Elife ; 92020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795387

RESUMO

Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.


Assuntos
Epiderme Vegetal/citologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Transdução de Sinais , Diferenciação Celular , Endocitose , Proteínas de Plantas/genética , Estômatos de Plantas/citologia , Sinais Direcionadores de Proteínas/genética
7.
Plant Cell Rep ; 39(3): 381-391, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31828377

RESUMO

KEY MESSAGE: Trafficking protein particle (TRAPP) complexes subunit gene AtTrs33 plays an important role in keeping apical meristematic activity and dominance in Arabidopsis. TRAPP complexes, composed of multimeric subunits, are guanine-nucleotide exchange factors for certain Rab GTPases and are believed to be involved in the regulation of membrane trafficking, but the cases in Arabidopsis are largely unknown. Trs33, recently proposed to be a component of TRAPP IV, is non-essential in yeast cells. A single copy of Trs33 gene, AtTrs33, was identified in Arabidopsis. GUS activity assay indicated that AtTrs33 was ubiquitously expressed. Based on a T-DNA insertion line, we found that loss-of-function of AtTrs33 is lethal for apical growth. Knock-down or knock-in of AtTrs33 affects apical meristematic growth and fertility, which indicates that AtTrs33 plays an important role in keeping apical meristematic activity and dominance in Arabidopsis. Analysis of auxin responses and PIN1/2 localization indicate that impaired apical meristematic activity and dominance were caused by altered auxin responses through non-polarized PIN1 localization. The present study reported that AtTrs33 plays an essential role in Arabidopsis cell growth and organization, which is different with its homologue in yeast. These findings provide new insights into the functional divergence of TRAPP subunits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células/efeitos dos fármacos , Fertilidade/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Transcrição Gênica/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética
8.
Plant J ; 100(2): 279-297, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264742

RESUMO

Transport Protein Particle II (TRAPPII) is essential for exocytosis, endocytosis, protein sorting and cytokinesis. In spite of a considerable understanding of its biological role, little information is known about Arabidopsis TRAPPII complex topology and molecular function. In this study, independent proteomic approaches initiated with TRAPP components or Rab-A GTPase variants converge on the TRAPPII complex. We show that the Arabidopsis genome encodes the full complement of 13 TRAPPC subunits, including four previously unidentified components. A dimerization model is proposed to account for binary interactions between TRAPPII subunits. Preferential binding to dominant negative (GDP-bound) versus wild-type or constitutively active (GTP-bound) RAB-A2a variants discriminates between TRAPPII and TRAPPIII subunits and shows that Arabidopsis complexes differ from yeast but resemble metazoan TRAPP complexes. Analyzes of Rab-A mutant variants in trappii backgrounds provide genetic evidence that TRAPPII functions upstream of RAB-A2a, allowing us to propose that TRAPPII is likely to behave as a guanine nucleotide exchange factor (GEF) for the RAB-A2a GTPase. GEFs catalyze exchange of GDP for GTP; the GTP-bound, activated, Rab then recruits a diverse local network of Rab effectors to specify membrane identity in subsequent vesicle fusion events. Understanding GEF-Rab interactions will be crucial to unravel the co-ordination of plant membrane traffic.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocinese/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Modelos Biológicos , Mutação , Transporte Proteico , Proteoma , Proteômica , Via Secretória , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
Nature ; 563(7733): E30, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30333630

RESUMO

In Extended Data Fig. 5d of this Letter, the blots for anti-pS612 and anti-BAK1 were inadvertently duplicated. This figure has been corrected online.

10.
J Cell Sci ; 131(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177507

RESUMO

The occasion of The Company of Biologists' workshop 'Cellular gateways: expanding the role of endocytosis in plant development' on 22-25 April 2018, at Wiston House, an Elizabethan mansion in West Sussex, England, witnessed stimulating and lively discussions on the mechanism and functions of endocytosis in plant cells. The workshop was organized by Jenny Russinova, Daniël Van Damme (both VIB/University of Ghent, Belgium) and Takashi Ueda (National Institute for Basic Biology, Okazaki, Japan), and aimed to bridge the gap in knowledge about the endocytic machinery and its cargos in the plant field.


Assuntos
Endocitose , Desenvolvimento Vegetal , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
11.
Nature ; 561(7722): 248-252, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177827

RESUMO

Multicellular organisms use cell-surface receptor kinases to sense and process extracellular signals. Many plant receptor kinases are activated by the formation of ligand-induced complexes with shape-complementary co-receptors1. The best-characterized co-receptor is BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), which associates with numerous leucine-rich repeat receptor kinases (LRR-RKs) to control immunity, growth and development2. Here we report key regulatory events that control the function of BAK1 and, more generally, LRR-RKs. Through a combination of phosphoproteomics and targeted mutagenesis, we identified conserved phosphosites that are required for the immune function of BAK1 in Arabidopsis thaliana. Notably, these phosphosites are not required for BAK1-dependent brassinosteroid-regulated growth. In addition to revealing a critical role for the phosphorylation of the BAK1 C-terminal tail, we identified a conserved tyrosine phosphosite that may be required for the function of the majority of Arabidopsis LRR-RKs, and which separates them into two distinct functional classes based on the presence or absence of this tyrosine. Our results suggest a phosphocode-based dichotomy of BAK1 function in plant signalling, and provide insights into receptor kinase activation that have broad implications for our understanding of how plants respond to their changing environment.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Arabidopsis/química , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Ligantes , Modelos Moleculares , Fosforilação , Fosfotirosina/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/imunologia
12.
Plant Sci ; 274: 231-241, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080609

RESUMO

BET5 is a component of trafficking protein particle (TRAPP) which has been studied extensively in non-plant organisms where they are involved in membrane trafficking within Golgi and between Golgi and early endosomes. Recent analysis of TRAPP in different classes of organisms indicates that TRAPP function might exhibit differences among organisms. A single copy of the BET5 gene named AtBET5 was found in the Arabidopsis genome based on sequence similarity. Developmental phenotype and the underlying mechanisms have been characterized upon transcriptional knock-down lines generated by both T-DNA insertion and RNAi. Pollen grains of the T-DNA insertional line present reduced fertility and pilate exine instead of tectate exine. Perturbation of the AtBET5 expression by RNAi leads to apical meristematic organization defects and reduced fertility as well. The reduced fertility was due to the pollination barrier caused by an altered composition and structure of pollen walls. Auxin response in root tip cells is altered and there is a severe disruption in polar localization of PIN1-GFP, but to a less extent of PIN2-GFP in the root tips, which causes the apical meristematic organization defects and might also be responsible for the secretion of sporopollenin precursor or polar targeting of sporopollenin precursor transporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biopolímeros/metabolismo , Carotenoides/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutagênese Insercional , Pólen/genética , Pólen/crescimento & desenvolvimento , Interferência de RNA , Proteínas Recombinantes de Fusão , Proteínas de Transporte Vesicular/genética
13.
Dev Cell ; 45(3): 303-315.e5, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738710

RESUMO

Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula , Estômatos de Plantas/citologia , Arabidopsis/metabolismo , Ciclo Celular , Divisão Celular , Regulação da Expressão Gênica de Plantas , Modelos Teóricos , Estômatos de Plantas/metabolismo
14.
BMC Biol ; 16(1): 21, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463247

RESUMO

Stomata are pores on plant epidermis that facilitate gas exchange and water evaporation between plants and the environment. Given the central role of stomata in photosynthesis and water-use efficiency, two vital events for plant growth, stomatal development is tightly controlled by a diverse range of signals. A family of peptide hormones regulates stomatal patterning and differentiation. In addition, plant hormones as well as numerous environmental cues influence the decision of whether to make stomata or not in distinct and complex manners. In this review, we summarize recent findings that reveal the mechanism of these three groups of signals in controlling stomatal formation, and discuss how these signals are integrated into the core stomatal development pathway.


Assuntos
Exposição Ambiental , Fotossíntese/fisiologia , Desenvolvimento Vegetal/fisiologia , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Exposição Ambiental/análise , Luz , Água
15.
Elife ; 62017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266915

RESUMO

Development of stomata, valves on the plant epidermis for optimal gas exchange and water control, is fine-tuned by multiple signaling peptides with unique, overlapping, or antagonistic activities. EPIDERMAL PATTERNING FACTOR1 (EPF1) is a founding member of the secreted peptide ligands enforcing stomatal patterning. Yet, its exact role remains unclear. Here, we report that EPF1 and its primary receptor ERECTA-LIKE1 (ERL1) target MUTE, a transcription factor specifying the proliferation-to-differentiation switch within the stomatal cell lineages. In turn, MUTE directly induces ERL1. The absolute co-expression of ERL1 and MUTE, with the co-presence of EPF1, triggers autocrine inhibition of stomatal fate. During normal stomatal development, this autocrine inhibition prevents extra symmetric divisions of stomatal precursors likely owing to excessive MUTE activity. Our study reveals the unexpected role of self-inhibition as a mechanism for ensuring proper stomatal development and suggests an intricate signal buffering mechanism underlying plant tissue patterning.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Diferenciação Celular , Proliferação de Células
16.
Plant Physiol ; 171(3): 1996-2007, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231102

RESUMO

The endoplasmic reticulum (ER) is a cellular network comprising membrane tubules and sheets stretching throughout the cytoplasm. Atlastin GTPases, including Atlastin-1 in mammals and RHD3 in plants, play a role in the generation of the interconnected tubular ER network by promoting the fusion of ER tubules. Root hairs in rhd3 are short and wavy, a defect reminiscent of axon growth in cells with depleted Atlastin-1. However, how a loss in the ER complexity could lead to a defective polarized cell growth of root hairs or neurons remains elusive. Using live-cell imaging techniques, we reveal that, a fine ER distribution, which is found in the subapical zone of growing root hairs of wild-type plants, is altered to thick bundles in rhd3 The localized secretion to the apical dome as well as the apical localization of root hair growth regulator ROP2 is oscillated in rhd3 Interestingly, the shift of ROP2 precedes the shift of localized secretion as well as the fine ER distribution in rhd3 Our live imaging and pharmacologic modification of root hair growth defects in rhd3 suggest that there is interplay between the ER and microtubules in the polarized cell growth of root hairs. We hypothesize that, under the guidance of ROP2, RHD3, together with the action of microtubules, is required for the formation of a fine ER structure in the subapical zone of growing root hairs. This fine ER structure is essential for the localized secretion to the apical dome in polarized cell growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas de Ligação ao GTP/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Polaridade Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/genética , Microtúbulos/metabolismo , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
17.
Methods Mol Biol ; 1043: 103-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23913040

RESUMO

Rab proteins are key regulators of membrane transport in eukaryotes. Recent evidence from different species supports the notion that some Rab proteins are crucial for cytokinesis, a pivotal procedure for successful cell division. As a family of monomeric small GTPases of the Ras superfamily, the function of Rab proteins is modulated by guanine nucleotide binding and hydrolysis. To investigate the function of Rab proteins, creating dominant negative or constitutively active mutant forms of a Rab protein is a widely used approach. To study cytokinesis in plant cells, using fluorescent dye to highlight the cell shape and the nuclei, and to monitor the formation of the newly formed cell plate in mitotic cells, is easy and useful. In this chapter, we describe detailed methods for (1) generating transgenic plants expressing dominant negative or constitutively active form of RAB-A1c; (2) fluorescent staining of cell shape, cell wall, and nuclei of mitotic root tip cells; (3) fluorescent staining of newly formed cell plate; and (4) detecting fluorescent signals using Confocal Laser Scanning Microscopy in the genetic model plant species Arabidopsis thaliana.


Assuntos
Arabidopsis/genética , Citocinese/genética , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citoplasma/metabolismo , Meristema/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transporte Proteico/genética , Transdução de Sinais/genética , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/genética
18.
Plant Physiol Biochem ; 69: 82-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728391

RESUMO

Galactinol synthase (GOLS, EC 2.4.1.123), a key enzyme in the synthesis of raffinose family oligosaccharides (RFOs), catalyzes the condensation of UDP-galactose with myo-inositol to produce galactinol as the sole donor for the synthesis of RFOs. RFOs have been implicated in mitigating effects of environmental stresses on plants. TsGOLS2, was cloned from Thellungiella salsuginea with high homology to AtGOLS2. TsGOLS2 was up-regulated by several abiotic stresses. We overexpressed TsGOLS2 in Arabidopsis thaliana. The contents of galactinol, raffinose, and α-ketoglutaric acid were significantly increased in transgenic plants. Compared to wild type plants, salt-stressed transgenic A. thaliana exhibited higher germination rate, photosynthesis ability, and seedling growth. After being treated with osmotic stress by high concentration of sorbitol, transgenic plants retained high germination rates and grew well during early development. These results indicated that overexpression of TsGOLS2 in A. thaliana improved the tolerance of transgenic plants to high salinity and osmotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Galactosiltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Dissacarídeos/metabolismo , Galactosiltransferases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Cetoglutáricos/metabolismo , Pressão Osmótica/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Rafinose/metabolismo , Salinidade , Cloreto de Sódio/farmacologia
19.
Mol Plant ; 6(3): 847-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23075992

RESUMO

In plant cells, Rab-A proteins have been implicated to play important roles in membrane trafficking from the trans-Golgi network (TGN) to the plasma membrane/cell wall and to the newly formed cell plate in cytokinesis. But how different Rab-A proteins may work in the TGN is not well studied. We show here that RAB-A1c defines a population of TGN that is partially overlapped with the VHA-a1 marked-TGN. Interestingly, the morphology of RAB-A1c defined-TGN is sensitive to endosidin 1 (ES1), but not to wortmannin. In mitotic cells, RAB-A1c is relocated to the cell plate. We revealed that this process could be interrupted by ES1, but not by wortmannin. In addition, root growth and cytokinesis in root mitotic cells of rab-a1a/b/c triple mutant seedlings are hypersensitive to lower concentrations of ES1. ES1 is known to selectively block the transport of several plasma membrane auxin transporters, including PIN2 and AUX1 at the TGN. Together with the known facts that members of Rab-A1 proteins are involved in auxin-mediated responses in root growth and that mutations in TRAPPII, a protein complex that acts upstream of RAB-A1c, also selectively impair the transport of PIN2 and AUX1 at the TGN, we propose that the Rab-A1-mediated trafficking pathways around the TGN, but not Rab-A1s directly, are the target of ES1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Citocinese/efeitos dos fármacos , Limoninas/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , Androstadienos/farmacologia , Arabidopsis/efeitos dos fármacos , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Wortmanina , Rede trans-Golgi/efeitos dos fármacos
20.
J Integr Plant Biol ; 54(11): 840-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23046093

RESUMO

The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules. The ER plays crucial roles in the biosynthesis and transport of proteins and lipids, and in calcium (Ca(2+) ) regulation in compartmentalized eukaryotic cells including plant cells. To support its well-segregated functions, the shape of the ER undergoes notable changes in response to both developmental cues and outside influences. In this review, we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER, and the importance of the interconnected ER network in cell polarity. In animal and yeast cells, two family proteins, the reticulons and DP1/Yop1, are required for shaping high-curvature ER tubules, while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network. In plant cells, recent data also indicate that the reticulons are involved in shaping ER tubules, while RHD3, a plant member of the atlastin GTPases, is required for the generation of an interconnected ER network. We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles, with a focus on how the ER and Golgi interplay in plant cells.


Assuntos
Retículo Endoplasmático/metabolismo , Células Vegetais/metabolismo , Actomiosina/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...