Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(51): e36357, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134094

RESUMO

RATIONALE: Retinitis pigmentosa with or without skeletal abnormalities (RPSKA) is an autosomal recessive disorder caused by mutations in the CWC27 gene. Skeletal dysplasia and non-syndromic retinitis pigmentosa are typical manifestations, and most patients present with retinopathy such as retinitis pigmentosa and limited visual field. Its clinical manifestations are complex and diverse, often involving multiple systems. Examples include short finger deformities, peculiar facial features, short stature, and neurodevelopmental abnormalities, and it is easy to misdiagnose clinically, and early diagnosis is crucial for prognosis. PATIENT CONCERNS: A 2-year and 2-month-old female child was admitted to the hospital due to "unsteady walking alone and slow reaction for more than half a year." After admission, the child was found to have delayed motor development, accompanied by special face, abnormal physical examination of the nervous system, cranial MRI Dandy-Walker malformation, considering developmental delay. DIAGNOSES: Whole exome sequencing of the family line revealed the presence of a c.617(exon7)C>A pure mutation in the CWC27 gene in the affected child (this locus has been reported in the clinical literature); the final diagnosis is RPSKA. INTERVENTIONS: Unfortunately, there is no specific drug for the disease; we give children rehabilitation training treatment. OUTCOMES: During follow-up process we found that children's condition is better than before. LESSONS SUBSECTIONS AS PER STYLE: We reported a case of RPSKA caused by mutations in the CWC27 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.


Assuntos
Ciclofilinas , Retinose Pigmentar , Criança , Feminino , Humanos , Lactente , Homozigoto , Mutação , Linhagem , Fenótipo , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Ciclofilinas/genética
2.
Medicine (Baltimore) ; 102(19): e33744, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171308

RESUMO

BACKGROUND: TBL1XR1, also known as IRA1 or TBLR1, encodes a protein that is localized in the nucleus and is expressed in most tissues. TBL1XR1 binds to histones H2B and H4 in vitro and functions in nuclear receptor-mediated transcription. TBL1XR1 is also involved in the regulation of the Wnt-ß-catenin signaling pathway. Mutations in the TBL1XR1 gene impair the Wnt-ß-catenin signaling pathway's ability to recruit Wnt-responsive element chromatin, affecting brain development. Mutations in this gene cause various clinical phenotypes, including Pierpont syndrome, autism spectrum disorder, speech and motor delays, mental retardation, facial dysmorphism, hypotonia, microcephaly, and hearing impairment. CASE SUMMARY: A 5-month-old female child was admitted with "episodic limb tremors for more than 1 month." At the time of admission, the child had recurrent episodes of limb tremors with motor retardation and a partially atypical and hypsarrhythmic video electroencephalogram. It was determined that a heterozygous mutation in the TBL1XR1 gene caused West syndrome and global developmental delay. Recurrent episodes persisted for 6 months following oral treatment with topiramate; the addition of oral treatment with vigabatrin did not show any significant improvement, and the disease continued to recur. The child continued to have recurrent episodes of limb tremors at follow-up until 1 year and 3 months of age. Additionally, she developed poor eye contact and a poor response to name-calling. CONCLUSION: We report the case of a child with West syndrome and a global developmental delay caused by a heterozygous mutation in the TBL1XR1 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.


Assuntos
Transtorno do Espectro Autista , Espasmos Infantis , Humanos , Criança , Feminino , beta Catenina/genética , Tremor , Mutação , Proteínas Repressoras/metabolismo , Receptores Citoplasmáticos e Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA