Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793396

RESUMO

Aiming to address the vibration noise problems on ships, we constructed a piezoelectric phononic crystal (PC) plate structure model, solved the governing equations of the structure using the partial differential equations module (PDE) in the finite element softwareCOMSOL6.1, and obtained the corresponding energy band structure, transmission curves, and vibration modal diagrams. The application of this method to probe the structural properties of two-dimensional piezoelectric PCs is described in detail. The calculation results obtained using this method were compared with the structures obtained using the traditional plane wave expansion method (PWE) and the finite element method (FE). The results were found to be in perfect agreement, which verified the feasibility of this method. To safely and effectively adjust the bandgap within a reasonable voltage range, this paper explored the order of magnitude of the plate thickness, the influence of the voltage on the bandgap, and the dependence between them. It was found that the smaller the order of magnitude of the plate thickness, the smaller the order of magnitude of the band in which the bandgap was located. The magnitude of the driving voltage that made the bandgap change became smaller accordingly. The new idea of attaching the PC plate to the conventional plate structure to achieve a vibration damping effect is also briefly introduced. Finally, the effects of lattice constant, plate width, and thickness on the bandgap were investigated.

2.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612216

RESUMO

This paper proposes a local resonance-type pentagonal phononic crystal beam structure for practical engineering applications to achieve better vibration and noise reduction. The energy band, transmission curve, and displacement field corresponding to the vibration modes of the structure are calculated based on the finite element method and Bloch-Floquet theorem. Furthermore, an analysis is conducted to understand the mechanism behind the generation of bandgaps. The numerical analysis indicates that the pentagonal unit oscillator creates a low-frequency bandgap between 60-70 Hz and 107-130 Hz. Additionally, the pentagonal phononic crystal double-layer beam structure exhibits excellent vibration damping, whereas the single-layer beam has poor vibration damping. The article comparatively analyzes the effects of different parameters on the bandgap range and transmission loss of a pentagonal phononic crystal beam. For instance, increasing the thickness of the lead layer leads to an increase in the width of the bandgap. Similarly, increasing the thickness of the rubber layer, intermediate plate, and total thickness of the phononic crystals results in a bandgap at lower frequencies. By adjusting the parameters, the beam can be optimized for practical engineering purposes.

3.
Materials (Basel) ; 16(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36984347

RESUMO

Locally resonant phononic crystals are a kind of artificial periodic composite material/structure with an elastic wave band gap that show attractive application potential in low-frequency vibration control. For low-frequency vibration control problems of ship power systems, this paper proposes a phononic crystal board structure, and based on the Bloch theorem of periodic structure, it uses a finite element method to calculate the band structure and the displacement fields corresponding to the characteristic mode and vibration transmission curve of the corresponding finite periodic sandwich plate structure, and the band gap characteristics are studied. The mechanism of band gap formation is mainly attributed to the mode coupling of the phononic crystal plate structure. Numerical results show that the sandwich plate structure has a double periodicity, so it has a multi-stage elastic wave band gap, which can fully inhibit the transmission of flexural waves and isolate the low-frequency flexural vibration. The experimental measurements of flexural vibration transmission spectra were conducted to validate the accuracy and reliability of the numerical calculation method. On this basis, the potential application of the proposed vibration isolation method in a marine power system is discussed. A vibration isolation platform mounted on a steel plate is studied by numerical simulation, which can isolate low-frequency vibration to protect electronic equipment and precision instruments.

4.
Ultrasonics ; 109: 106225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32977292

RESUMO

Plane wave expansion (PWE) method is extended to calculate the band structures of a proposed piezoelectric phononic crystal (PC) nanobeam by applying surface elasticity and Timoshenko beam theories. The calculation method is derived and formulized in detail. Further, electrical voltage and external axial force are picked to study the effects of electro-mechanical coupling fields on band gaps, residual surface stress and material intrinsic length are chosen to research the influences of surface effects on band gaps, and ratio between lengths of PZT-4 and epoxy in a unit cell and height-width ratio are picked to investigate the effects of geometric parameters on band gaps. In addition, all the results are compared to those in Euler nanobeam with same parameters. All the results and further analysis demonstrate that the influence rules will play an active role in design process and active control of nano electro-mechanical system based on piezoelectric PC nanobeam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA