Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
BMC Med Genomics ; 17(1): 127, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730335

RESUMO

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Metástase Neoplásica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Prognóstico , Biomarcadores Tumorais/genética , Ilhas de CpG/genética , Microambiente Tumoral , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Nomogramas
2.
Food Res Int ; 186: 114317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729709

RESUMO

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Assuntos
Digestão , Fórmulas Infantis , Recém-Nascido Prematuro , Leite Humano , Leite Humano/química , Leite Humano/metabolismo , Humanos , Fórmulas Infantis/química , Recém-Nascido , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Lipídeos/análise , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos , Trato Gastrointestinal/metabolismo , Modelos Biológicos , Monoglicerídeos/metabolismo , Monoglicerídeos/análise , Gorduras na Dieta/metabolismo , Gorduras na Dieta/análise
4.
Int J Biol Macromol ; : 132206, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735610

RESUMO

The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.

5.
Int J Paediatr Dent ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736091

RESUMO

BACKGROUND: Referrals of paediatric patients to a university clinic have been increasing over the last several years. AIM: To evaluate characteristics of referred and non-referred patients at the University of Iowa's Pediatric Dental Clinic (UIPDC). DESIGN: A retrospective chart review included dental records of 340 referred and 383 non-referred patients from July 1, 2015, to May 31, 2016 (n = 723). Age, distance to the clinic, size of the patient's community, insurance, number of teeth with decay, treatment needs, educational level of the provider, and presence of patient special health care needs were obtained. Descriptive statistics, bivariate analysis, and multivariable logistic regression were performed to analyze the outcomes (alpha = .05). RESULTS: Referred patients were more likely to live >60 miles away, live in a community of >75 000 people, have special health care needs, have caries/greater number of teeth with decay, need endodontic treatment, and were less likely to remain patients at the clinic (p < .0001). Referred patients were also more likely to need extractions (p = .0104), but less likely to need space maintenance/comprehensive orthodontic treatment (p = .0002). CONCLUSION: There was a difference in the complexity of patient treatment needs between referred and non-referred patients.

6.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611479

RESUMO

Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.

7.
BMC Plant Biol ; 24(1): 296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632529

RESUMO

BACKGROUND: Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. RESULTS: Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. CONCLUSION: This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.


Assuntos
Brassica , Brassica/genética , Filogenia , Cádmio/metabolismo , Família Multigênica , Genômica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Genoma de Planta
8.
J Nanobiotechnology ; 22(1): 192, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637848

RESUMO

Androgen deprivation therapy (ADT) is a crucial and effective strategy for prostate cancer, while systemic administration may cause profound side effects on normal tissues. More importantly, the ADT can easily lead to resistance by involving the activation of NF-κB signaling pathway and high infiltration of M2 macrophages in tumor microenvironment (TME). Herein, we developed a biomimetic nanotherapeutic platform by deriving cell membrane nanovesicles from cancer cells and probiotics to yield the hybrid cellular nanovesicles (hNVs), loading flutamide (Flu) into the resulting hNVs, and finally modifying the hNVs@Flu with Epigallocatechin-3-gallate (EGCG). In this nanotherapeutic platform, the hNVs significantly improved the accumulation of hNVs@Flu-EGCG in tumor sites and reprogramed immunosuppressive M2 macrophages into antitumorigenic M1 macrophages, the Flu acted on androgen receptors and inhibited tumor proliferation, and the EGCG promoted apoptosis of prostate cancer cells by inhibiting the NF-κB pathway, thus synergistically stimulating the antitumor immunity and reducing the side effects and resistance of ADT. In a prostate cancer mouse model, the hNVs@Flu-EGCG significantly extended the lifespan of mice with tumors and led to an 81.78% reduction in tumor growth compared with the untreated group. Overall, the hNVs@Flu-EGCG are safe, modifiable, and effective, thus offering a promising platform for effective therapeutics of prostate cancer.


Assuntos
NF-kappa B , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , NF-kappa B/metabolismo , Androgênios/uso terapêutico , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Imunoterapia/métodos , Chá , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Nano Lett ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683656

RESUMO

The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.

10.
Exp Ther Med ; 27(5): 222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590579

RESUMO

Colorectal cancer (CRC) is a deadly and aggressive type of cancer that has a high fatality rate. The expression levels of replication factor C subunit 3 (RFC3) and kinesin family member 14 (KIF14) have been reported to be increased in CRC. The current study aimed to explore the effects of RFC3 on the malignant behaviors of CRC cells and its possible underlying mechanism involving KIF14. RFC3 and KIF14 expression levels in CRC tissues were analyzed using TNMplot database and Gene Expression Profiling Interactive Analysis database bioinformatics tools. RFC3 and KIF14 levels in CRC cells were examined using reverse transcription-quantitative PCR and western blotting. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to assess cell proliferation. Cell apoptosis was determined using flow cytometric analysis. Wound healing and Transwell assays were adopted for the evaluation of cell migration and invasion. Tube formation assay in human umbilical vein endothelial cells was used to measure angiogenesis. Western blotting analysis was performed to determine the expression of apoptosis-, migration- and angiogenesis-associated proteins. Additionally, bioinformatics tools predicted the co-expression and interaction of RFC3 and KIF14, which was verified by a co-immunoprecipitation assay. RFC3 displayed elevated expression in CRC tissues and cells, and depletion of RFC3 halted the proliferation, migration, invasion and angiogenesis, while increasing the apoptosis of CRC cells; this was accompanied by changes in the expression levels of related proteins. In addition, RFC3 bound to KIF14 and interference with RFC3 reduced KIF14 expression. Moreover, KIF14 upregulation reversed the effects of RFC3 depletion on the aggressive cellular behaviors in CRC. In conclusion, RFC3 might interact with KIF14 to function as a contributor to the malignant development of CRC.

11.
Planta ; 259(5): 95, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512412

RESUMO

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Assuntos
Brassica napus , Brassica rapa , Melhoramento Vegetal , Plântula/fisiologia , Fenótipo , Genótipo
13.
Adv Mater ; : e2313188, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362813

RESUMO

Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.

14.
J Adhes Dent ; 26(1): 31-40, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38276890

RESUMO

PURPOSE: To compare the adhesion of a self-curing (Tokuyama Universal Bond, TUB) and a light-curing (Scotchbond Universal, SBU) universal adhesive to CAD/CAM materials, enamel, and dentin. This study also assessed differences in enamel adhesion between self-etch vs selective etching modes, as well as immediate and long-term adhesion to dentin for both adhesives. MATERIALS AND METHODS: Shear bond strength (SBS) testing was used to assess adhesion to enamel, dentin, Lava Ultimate (LU), Vita Enamic (VE), IPS e.max CAD (LD), IPS e.max ZirCAD (3Y-Zir), and Lava Esthetic (5Y-Zir) (n = 10). Moreover, bonding to enamel in self-etch and selective etching modes (n = 10) as well as immediate and aged resin-dentin bond strength (24 h after bonding, after 100,000 thermal cycles [TC] and long-term storage) was evaluated using the microtensile bond-strength test (n = 30). Failure mode was also determined for the bonding to dentin. Statistical analyses consisted of one-way and two-way ANOVA with appropriate post-hoc Tukey-Kramer or two-sample t-tests, as well as the chi-squared or Fisher's exact test (α = 0.05). RESULTS: TUB and SBU universal adhesives presented similar bonding to LU, VE, 3Y-Zir, and 5Y-Zir. However, SBS for TUB was superior to SBU when bonding to lithium-disilicate glass-ceramic (IPS e.max CAD). SBU showed better adhesion to dentin and enamel when used in the self-etch mode, while TUB promoted strong bond strength to enamel in the selective etching mode. TUB after TC was the only aging condition that yielded a significant reduction in resin-dentin bond strength. CONCLUSION: In-vitro adhesion performance of the self-curing and light-curing universal adhesives varies depending on the dental substrate or CAD/CAM restorative material used for bonding.


Assuntos
Colagem Dentária , Cimentos Dentários , Adesivos Dentinários/química , Cura Luminosa de Adesivos Dentários , Lâmpadas de Polimerização Dentária , Cimentos de Resina/química , Teste de Materiais , Resistência ao Cisalhamento , Dentina
15.
Adv Mater ; 36(6): e2304845, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37723642

RESUMO

Insufficient activation of the stimulator of interferon genes (STING) signaling pathway and profoundly immunosuppressive microenvironment largely limits the effect of cancer immunotherapy. Herein, tumor microenvironment (TME)-responsive nanoparticles (PMM NPs) are exploited that simultaneously harness STING and Toll-like receptor 4 (TLR4) to augment STING activation via TLR4-mediated nuclear factor-kappa B signaling pathway stimulation, leading to the increased secretion of type I interferons (i.e., 4.0-fold enhancement of IFN-ß) and pro-inflammatory cytokines to promote a specific T cell immune response. Moreover, PMM NPs relieve the immunosuppression of the TME by decreasing the percentage of regulatory T cells, and polarizing M2 macrophages to the M1 type, thus creating an immune-supportive TME to unleash a cascade adaptive immune response. Combined with an anti-PD-1 antibody, synergistic efficacy is achieved in both inflamed colorectal cancer and noninflamed metastatic breast tumor models. Moreover, rechallenging tumor-free animals with homotypic cells induced complete tumor rejection, indicating the generation of systemic antitumor memory. These TME-responsive nanoparticles may open a new avenue to achieve the spatiotemporal orchestration of STING activation, providing a promising clinical candidate for next-generation cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Receptor 4 Toll-Like , Microambiente Tumoral , Imunoterapia , Transdução de Sinais , Neoplasias/terapia
16.
Front Oncol ; 13: 1284255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074689

RESUMO

Background: The impact of anticancer therapy and related clinical factors on the severity of COVID-19 in cancer patients during the Omicron pandemic has not been established. The recent outbreak in China caused predominantly by the BA.5.2 and BF.7 strains of Omicron provided us with the opportunity to observe objectively the impact of this strain in oncology patients. We initiated this two-center retrospective study in China to determine the impact of anti-cancer treatment, other clinical factors, and cancer characteristics on COVID-19 severity in cancer patients infected with coronavirus during the SARS-CoV-2 Omicron variant pandemic in China. Methods: We retrospectively included 554 cancer patients infected with COVID-19 from two medical centers. Data on their anticancer treatment prior to COVID-19 infection and general clinical characteristics (sex, age, past medical history, etc.) were collected. Univariate statistical analysis was performed to identify the factors associated with the severity of COVID-19. Results: Among 554 cancer patients infected with COVID-19, there were 15 (2.7%) severe/critical cases, 86 (15.5%) cases with medium severity, and 453 (81.8%) cases with mild severity. Univariate analysis revealed that advanced age, male sex, worse ECOG score, unvaccinated status, and previous liver, kidney, and brain diseases were associated with more severe COVID-19. However, recent antitumor therapy, including cytotoxic chemotherapy within two weeks did not have a significant correlation with the severity of COVID-19 caused by the Omicron variant. Conclusion: The severity of COVID-19 caused by the Omicron variant is not exacerbated by recent anticancer therapy in cancer patients. Therefore, anticancer therapy should not be discontinued in such cases, especially those with mild severity.

17.
J Prosthodont ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964664

RESUMO

PURPOSE: Older adults with removable dentures experience high rates of both caries (when the natural dentition remains) and salivary gland dysfunction. While many commercial dental therapeutic agents target these two interrelated problems, none have been labeled for use on the fitting surface of removable dentures. Off-label use of MI Paste (GC America, Alsip, IL), a dental therapeutic containing casein-phosphopeptide-amorphous-calcium-phosphate (CPP-ACP), was investigated following its application to the fitting surface of complete denture(s) with subsequent effects on salivary conditions measured. MATERIALS AND METHODS: Salivary flow rate and pH were recorded at baseline and 15 min following the application of 1 mL of CPP-ACP paste to the fitting surface of each participant's denture through whole saliva collection. To assess buffering capacity, equivalent volumes of 0.01 M lactic acid were added to the collected saliva samples, and pH reduction was measured. Comparisons of salivary parameters between baseline and post-CPP-ACP paste application and between subjects with and without self-reported xerostomia were conducted using a paired-sample t-test, Wilcoxon signed-rank test, or two-sample t-test as appropriate. RESULTS: Of the 28 participants (mean age = 70.3 ± 13.7 years, 17 males), 11 reported xerostomia. CPP-ACP-paste application was associated with decreased pH reduction during acid challenge compared to baseline (0.95 ± 0.24 vs. 1.54 ± 0.53, p < 0.001), and a higher final pH following acid challenge (5.93 ± 0.34 vs. 5.40 ± 0.66, p < 0.001). While the flow rates observed at post-CPP-ACP paste application were greater than those at baseline, the difference was not statistically significant (0.67 ± 0.44 mL/min vs. 0.55 ± 0.34 mL/min, p = 0.053). No significant differences were found in any salivary parameters between participants with or without self-reports of xerostomia. CONCLUSIONS: The findings highlight potential positive effects on salivary conditions following the application of the CPP-ACP-containing product, MI Paste, to the fitting surface of a removable complete denture as a potential caries-risk-management tool when natural dentition remains. Determining the caries-preventive clinical significance will require longer-term trials.

18.
medRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37961322

RESUMO

OBJECTIVE: Van der Woude Syndrome (VWS) classically presents with combinations of lip pits (LP) and orofacial clefts, with marked phenotypic discordance even amongst individuals carrying the same mutation. Such discordance suggests a possible role for epigenetic factors as phenotypic modifiers. Both IRF6 , causal for 70% of VWS cases, and TP63 interact in a regulatory loop to coordinate epithelial proliferation and differentiation for palatogenesis. We hypothesize that differential DNA methylation (DNAm) in CpG sites within regulatory regions of IRF6 and TP63 are associated with VWS phenotypic discordance. METHODS: We measured DNAm levels of CpG sites located in the promoter regions of IRF6 and TP63 and in an IRF6 enhancer element (MCS9.7) in 83 individuals with VWS grouped within 5 phenotypes for primary analysis: 1=CL+/-P+LP, 2=CL+/-P, 3=CP+LP, 4=CP, 5=LP and 2 phenotypes for secondary analysis: 1=any cleft and LP, 2= any cleft without LP. DNA samples were bisulfite converted and pyrosequenced with target-specific primers. Methylation levels were compared amongst phenotypes. RESULTS: CpG sites in the IRF6 promoter showed statistically significant differences in methylation among phenotypic groups in both analyses (P<0.05). Individuals with any form of cleft (Groups 1-4) had significantly higher methylation levels than individuals with lip pits only (Group 5). In the secondary analysis, individuals in Group 1 (cleft+LP) had significantly higher methylation than Group 2 (cleft only). CONCLUSION: Results indicated that hypermethylation of the IRF6 promoter is associated with more severe phenotypes (any cleft +/- lip pits); thus, possibly impacting an already genetically weakened IRF6 protein and leading to a more severe phenotype.

19.
J Am Dent Assoc ; 154(12): 1058-1066.e4, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37777935

RESUMO

BACKGROUND: Local anesthesia is an essential component of dentistry, but there is limited quantifiable understanding of what techniques and local anesthetic solutions are used by practicing dentists. Use of the local anesthetic articaine has been highly debated in dentistry regarding its efficacy and risks for paresthesia. The aims of this study were to expand the knowledge of local anesthesia practices of dentists in the United States through a large-scale survey and associate potential influencing factors regarding articaine use specifically. METHODS: The 23-item survey was sent to 10,340 practicing dentists in the United States, gathering demographic data and local anesthesia approaches and concerns. Statistical analysis consisted of descriptive, bivariate, and multivariate logistic regression analyses. RESULTS: A total of 1,128 dentists completed the survey. Previous experience with articaine was reported by 97.6% of respondents, with 3.3% no longer using articaine. Sixty percent of respondents indicated using articaine for most local anesthetic injections administered. Multivariable regression analysis found those reporting to use articaine for all local anesthetic injections involving vasoconstrictors were more likely to be male (odds ratio, 1.59; P = .002) or general dentists (odds ratio, 1.63; P < .001). CONCLUSIONS: Articaine has a perceived benefit to practitioners as most respondents reported using articaine as their primary local anesthetic. A practitioner's sex and type were found to affect the profile of use of articaine. PRACTICAL IMPLICATIONS: Assembling evidenced-based local anesthesia practices would be beneficial to ensure US practitioners are more standardized in administering local anesthetics, particularly articaine, in the safest and most efficacious way.


Assuntos
Anestesia Dentária , Carticaína , Masculino , Humanos , Estados Unidos , Feminino , Anestésicos Locais , Anestesia Dentária/métodos , Anestesia Local/métodos , Inquéritos e Questionários , Lidocaína , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...