Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1040302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338032

RESUMO

The secretion of peptidases from several pathogens has been reported, but the biological function of these proteins in plant-pathogen interactions is poorly understood. Fusarium oxysporum, a soil-borne plant pathogenic fungus that causes Fusarium wilt in its host, can secrete proteins into host plant cells during the infection process to interfere with the host plant defense response and promote disease occurrence. In this study, we identified a peptidase, FoAPY1, that could be secreted from F. oxysporum depending on the N-terminal signal peptide of the protein. FoAPY1 belongs to the peptidase M28 family and exerts peptidase activity in vitro. Furthermore, the FoAYP1 gene knockout strain (∆FoAYP1) presented reduced virulence to tomato plants, but its mycelial growth and conidiation were unchanged. Moreover, FoAYP1 overexpression tomato seedlings exhibited enhanced susceptibility to F. oxysporum and Botrytis cinerea strains. These data demonstrated that FoAYP1 contributes to the virulence of F. oxysporum may through peptidase activity against host plant proteins.

2.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374166

RESUMO

Pathogens utilize a panoply of effectors to manipulate plant defense. However, despite their importance, relatively little is actually known about regulation of these virulence factors. Here, we show that the effector Fol-Secreted Virulence-related Protein1 (FolSvp1), secreted from fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), directly binds and translocates the tomato pathogenesis-related protein1, SlPR1, from the apoplast outside the plasma membrane to the host nucleus via its nuclear localization signal. Relocation of SlPR1 abolishes generation of the defense signaling peptide, CAPE1, from its C-terminus, and as a consequence, facilitates pathogen invasion of plants. The action of FolSvp1 requires covalent modification by acetylation for full virulence in host tomato tissues. The modification is catalyzed by the Fol FolArd1 lysine acetyltransferase prior to secretion. Addition of an acetyl group to one residue, K167, prevents ubiquitination-dependent degradation of FolSvp1 in both Fol and plant cells with different mechanisms, allowing it to function normally in fungal invasion. Either inactivation of FolSvp1 or removal of the acetyl group on K167 leads to impaired pathogenicity of Fol. These findings indicate that acetylation can regulate the stability of effectors of fungal plant pathogens with impact on virulence.


Assuntos
Fusarium , Solanum lycopersicum , Virulência , Doenças das Plantas/microbiologia , Acetilação , Fusarium/metabolismo , Fatores de Virulência/metabolismo
3.
Mol Plant Pathol ; 23(9): 1346-1360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35696123

RESUMO

Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.


Assuntos
Fusarium , Solanum lycopersicum , Endorribonucleases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética
4.
Front Microbiol ; 12: 623735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643252

RESUMO

Protein lysine 2-hydroxyisobutyrylation (K hib ), a new type of post-translational modification, occurs in histones and non-histone proteins and plays an important role in almost all aspects of both eukaryotic and prokaryotic living cells. Fusarium oxysporum, a soil-borne fungal pathogen, can cause disease in more than 150 plants. However, little is currently known about the functions of K hib in this plant pathogenic fungus. Here, we report a systematic analysis of 2-hydroxyisobutyrylated proteins in F. oxysporum. In this study, 3782 K hib sites in 1299 proteins were identified in F. oxysporum. The bioinformatics analysis showed that 2-hydroxyisobutyrylated proteins are involved in different biological processes and functions and are located in diverse subcellular localizations. The enrichment analysis revealed that K hib participates in a variety of pathways, including the ribosome, oxidative phosphorylation, and proteasome pathways. The protein interaction network analysis showed that 2-hydroxyisobutyrylated protein complexes are involved in diverse interactions. Notably, several 2-hydroxyisobutyrylated proteins, including three kinds of protein kinases, were involved in the virulence or conidiation of F. oxysporum, suggesting that K hib plays regulatory roles in pathogenesis. Moreover, our study shows that there are different K hib levels of F. oxysporum in conidial and mycelial stages. These findings provide evidence of K hib in F. oxysporum, an important filamentous plant pathogenic fungus, and serve as a resource for further exploration of the potential functions of K hib in Fusarium species and other filamentous pathogenic fungi.

5.
Phytopathology ; 111(8): 1420-1427, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33399013

RESUMO

Fusarium graminearum is one of the most important causal agents of Fusarium head blight disease and is controlled mainly by chemicals such as demethylation inhibitor (DMI) fungicides. FgCYP51B is one of the DMI targets in F. graminearum, and Tyrosine123 (Y123) is an important amino acid in F. graminearum CYP51B, located in one of predicted substrate binding pockets based on the binding mode between DMIs and CYP51B. Previous studies suggest that resistance to DMI fungicides is attributed primarily to point mutations in the CYP51 gene and that the Y123H mutation in F. verticillioides CYP51 confers prochloraz resistance in the laboratory. To investigate the function of FgCYP51B Y123 residue in the growth and development, pathogenicity, and DMI resistance, we generated and analyzed the FgCYP51B Y123H mutant. Results revealed that the Y123H mutation led to reduced conidial sporulation and affected ascospore development; moreover, the mutation conferred reduced sensitivity to prochloraz. Quantitative PCR and molecular docking were performed to investigate the resistance mechanism. Results indicated that Y123H mutation changed the target gene expression and decreased the binding affinity of FgCYP51 to prochloraz. These results will attract more attention to the potential DMI-resistant mutation of F. graminearum and increase our understanding of the DMI resistance mechanism.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/genética , Imidazóis , Simulação de Acoplamento Molecular , Mutação , Doenças das Plantas/microbiologia
6.
Pest Manag Sci ; 74(6): 1472-1477, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29274114

RESUMO

BACKGROUND: Fusarium graminearum is the main pathogen of Fusarium head blight (FHB), a worldwide plant disease and one of the most significant wheat diseases in China. Demethylation inhibitor (DMI) fungicides, such as tebuconazole (TEC), are widely used to control FHB, but long-term use leads to low efficacy against FHB. Earlier studies showed that DMI resistance is associated with the fungal sterol 14α-demethylase (cytochrome P450 CYP51) gene, and that point mutations in the CYP51 gene are the primary mechanism of resistance to DMI fungicides. The aims of this study were to clarify the molecular mechanisms of resistance to TEC and identify the binding sites on the FgCYP51B protein. RESULTS: Site-directed mutagenesis was used to change the FgCYP51B gene of wild-type strain PH-1 from tyrosine to histidine at residue 137 (Y137H) to generate a mutant transformant, which was confirmed to be resistant to TEC compared with the parental strains. A three-dimensional FgCYP51B model was constructed, and molecular docking simulation studies were conducted to identify the optimum binding mode with TEC. The wild-type FgCYP51B protein displayed stronger affinity to TEC than that of the mutated FgCYP51B in the molecular docking analysis. CONCLUSION: These results indicate that a Tyr137 amino acid mutation in the cytochrome P450 FgCYP51B could lead to resistance to TEC and that Y137 forms part of the tebuconazole-binding pocket. © 2017 Society of Chemical Industry.


Assuntos
Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/genética , Esterol 14-Desmetilase/genética , Triazóis/farmacologia , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Simulação de Acoplamento Molecular , Esterol 14-Desmetilase/metabolismo
7.
Pest Manag Sci ; 74(1): 126-134, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28719051

RESUMO

BACKGROUND: Fusarium graminearum is the main pathogen of Fusarium head blight (FHB), a worldwide plant disease and a major disease of wheat in China. Control of FHB is mainly dependent on the application of demethylase inhibitor (DMI) fungicides. Fungal sterol 14α-demethylase enzymes (CYP51) are the main target for DMI fungicides. A molecular modeling study and biological evaluation were performed to investigate the binding mechanism between azoles and CYP51B in F. graminearum. RESULTS: A homology model based on the crystal structure of Aspergillus fumigatus was built. Molecular docking and molecular dynamics (MD) simulations were then used to identify the optimum binding mode of propiconazole (PRP), diniconazole (DIN), triadimenol (TRL), tebuconazole (TEC) and triadimefon (TRN) with FgCYP51B. Furthermore, the binding free energy of the five protein-inhibitor complexes was calculated using molecular mechanics generalized Born surface area and Poisson-Boltzmann surface area (MM-GB/PBSA) methods. Key residues in the selective binding of azoles to FgCYP51B were recognized by per-residue free energy decomposition analysis. The five ligands have a similar binding mode in the active pocket. The binding free energy to the enzyme for inhibitors PRP and TEC is more favorable than that of TRN, TRL and DIN. Furthermore, the amino acid residues Phe511, Val136, Ile374, Ala308, Ser312 and Try137 of FgCYP51B are key residues interacting with azoles fungicides. From the experimental evaluation, the 50% effective concentration (EC50 ) values for PRP, TEC, DIN, TRL and TRN are 0.024, 0.047, 0.148, 0.154 and 0.474 mg L-1 , respectively. These five molecules exhibit potential inhibitory activity against CYP51B protein from F. graminearum. CONCLUSION: Azole fungicides for FgCYP51B should possess more hydrophobic groups interacting with residues Phe511, Val136, Ile374, Ala308, Ser312 and Tyr137. PRP and TEC are preferable for the control of FHB than DIN, TRL and TRN. © 2017 Society of Chemical Industry.


Assuntos
Azóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/química , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Esterol 14-Desmetilase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doenças das Plantas/prevenção & controle , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...