Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Urol ; 42(1): 170, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506964

RESUMO

OBJECTIVE: To compare the outcomes between a modified Retzius-sparing robot-assisted radical prostatectomy (mRS-RARP) technique and conventional robot-assisted radical prostatectomy (Con-RARP) technique for cases with anterior prostate cancer (PCa), especially positive surgical margin (PSM) rates and urinary continence (UC). PATIENTS AND METHODS: We retrospectively included 193 mRS-RARP and 473 Con-RARP consecutively performed by a single surgeon for anterior PCa. Perioperative complications, pathology, and continence were compared after propensity score matching using 9 variables. RESULTS: After matching (n = 193 per group), PSM were not significantly different in the two groups (16.1% in mRS-RARP group vs. 15.0% in Con-RARP group, p = 0.779). The UC at catheter removal and at 1-month was significantly higher in the mRS-RARP (24.9% vs. 9.8%, p < 0.001; 29.0% vs. 13.5%, p < 0.001, respectively), but not at 3-, 6-, and 12-month follow-ups (p = 0.261, 0.832, and 0.683, respectively). CONCLUSION: mRS-RARP seems to be an oncologically safe approach for patients with anterior PCa. Compared with the conventional approach, mRS-RARP approach shows benefits in the short-term postoperative UC recovery.


Assuntos
Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Robótica , Masculino , Humanos , Estudos Retrospectivos , Pontuação de Propensão , Prostatectomia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Resultado do Tratamento
2.
Plant Physiol Biochem ; 206: 108264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091935

RESUMO

Environmental stresses, such as heat and drought, severely affect plant growth and development, and reduce wheat yield and quality globally. Squamosa promoter binding protein-like (SPL) proteins are plant-specific transcription factors that play a critical role in regulating plant responses to diverse stresses. In this study, we cloned and characterized TaSPL6, a wheat orthologous gene of rice OsSPL6. Three TaSPL6 homoeologs are located on the long arms of chromosomes 4A, 5B, and 5D, respectively, and share more than 98% sequence identity with each other. The TaSPL6 genes were preferentially expressed in roots, and their expression levels were downregulated in wheat seedlings subjected to heat, dehydration, and abscisic acid treatments. Subcellular localization experiments showed that TaSPL6 was localized in the nucleus. Overexpression of TaSPL6-A in wheat resulted in enhanced sensitivity to drought stress. The transgenic lines exhibited higher leaf water loss, malondialdehyde and reactive oxygen species (ROS) content, and lower antioxidant enzyme activities after drought treatment than wild-type plants. Gene silencing of TaSPL6 enhanced the drought tolerance of wheat, as reflected by better growth status. Additionally, RNA-seq and qRT-PCR analyses revealed that TaSPL6-A functions by decreasing the expression of a number of genes involved in stress responses. These findings suggest that TaSPL6 acts as a negative regulator of drought stress responses in plants, which may have major implications for understanding and enhancing crop tolerance to environmental stresses.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética
3.
Chemosphere ; 350: 141004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141682

RESUMO

Polychlorinated naphthalenes (PCNs) were characterized as persistent organic pollutants (POPs) that were widely distributed in the environment. Although the striking in vivo toxicity of these pollutants towards both animals and humans was well documented, their cytotoxicity and mechanism of action have not been extensively investigated. In this study, the in vitro antiproliferative activity of mono- and di-chloronaphthalenes as representative PCNs were evaluated and the results indicated strong growth inhibitory effects against mammalian cells, especially the human breast MCF-10A cell and human hepatic HL-7702 cells. 2-Chloronaphthalene with the most potent antiproliferative effects within the tested PCNs, which showed IC50 values ranging from 0.3 mM to 1.5 mM against selected human cell lines, was investigated for its working mechanisms. It promoted cellular apoptosis of MCF-10A cells upon the concentration of 200 µM. It also induced the autophagy of MCF-10A cells in a dose-dependent manner, resulting in cell death via the interaction of autophagy and apoptosis. Thus, these findings supported the theoretical foundation for interventional treatment of PCNs toxicity and also provided implications for the use of chemopreventive agents against the toxic chlorinated naphthalenes in the environments.


Assuntos
Poluentes Ambientais , Animais , Humanos , Poluentes Ambientais/análise , Fígado/química , Naftalenos/toxicidade , Naftalenos/análise , Apoptose , Mamíferos
4.
Cell Death Dis ; 14(11): 738, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957146

RESUMO

Osteoporosis has a profound influence on public health. First-line bisphosphonates often cause osteonecrosis of the jaw meanwhile inhibiting osteoclasts. Therefore, it is important to develop effective treatments. The results of this study showed that the increased level of NFATc1 m6A methylation caused by zoledronic acid (ZOL), with 4249A as the functional site, is highly correlated with the decreased bone resorption of osteoclasts. Upstream, METTL14 regulates osteoclast bone absorption through the methylation functional site of NFATc1. Downstream, YTHDF1 and YTHDF2 show antagonistic effects on the post-transcriptional regulation of NFATc1 after the m6A methylation level is elevated by METTL14. In this study, meRIP-Seq, luciferase reporter assays, meRIP and other methods were used to elucidate the NFATc1 regulatory mechanism of osteoclasts from the perspective of RNA methylation. In addition, EphA2 overexpression on exosomes is an effective biological method for targeted delivery of METTL14 into osteoclasts. Importantly, this study shows that METTL14 released by exosomes can increase the m6A methylation level of NFATc1 to inhibit osteoclasts, help postmenopausal osteoporosis patients preserve bone mass, and avoid triggering osteonecrosis of the jaw, thus becoming a new bioactive molecule for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Exossomos , Metiltransferases , Fatores de Transcrição NFATC , Osteonecrose , Osteoporose , Humanos , Reabsorção Óssea/genética , Diferenciação Celular , Exossomos/genética , Exossomos/metabolismo , Metilação , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo
5.
Chemosphere ; 339: 139708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536533

RESUMO

Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 µM, 20 ± 10 µM and 60 ± 20 µM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.


Assuntos
Triclosan , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis , Quimioprevenção , Mamíferos/metabolismo
6.
Plant Dis ; 107(11): 3608-3615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37272041

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most damaging foliage diseases of wheat across the world. Aegilops geniculata Roth is a valuable gene resource for enhancing wheat resistance to powdery mildew. This study identified Ae. geniculata accession PI 487224 as immune and PI 487228 as susceptible to powdery mildew. Genetic analysis of the F1, F2, and F2:3 progeny derived from PI 487224 × PI 487228 showed that powdery mildew resistance in PI 487224 was controlled by two independent dominant genes located on two different nonhomologous chromosomes. By combing bulked segregant RNA-Seq, genetic linkage analysis of a single resistance gene segregation population, and marker analysis of a set of 14 wheat-Ae. geniculata chromosome addition lines, one of the resistance genes, temperately designated PmAege7M, was mapped to a 4.9-cM interval flanked by markers STS7-55926 and SNP7-45792/STS7-65911 on the long arm of chromosome 7 Mg of PI 487224, spanning 604.73 to 622.82 Mb on the 7D long arm based on the Ae. tauschii reference genome (Aet_v4.0). The map and closely linked markers of PmAege7M from Ae. geniculata in this study will facilitate the transfer of PmAege7M into common wheat and fine mapping of the gene.


Assuntos
Aegilops , Triticum , Triticum/genética , Aegilops/genética , Marcadores Genéticos/genética , Genes de Plantas/genética , Mapeamento Cromossômico , Erysiphe/genética
7.
J Oral Pathol Med ; 52(1): 63-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445289

RESUMO

BACKGROUND: Soluble E-cadherin (sEcad), a tumor suppressor gene, has pro-oncogenic effects by binding to human epithelial growth factor receptor 2 (HER-2). In our previous study, 1/3 of carcinoma ex pleomorphic adenoma (CXPA) cases had HER-2 amplification, which is associated with tumorigenesis and malignancy. This study examines the role of sEcad in HER-2 amplified CXPA. METHODS: Immunohistochemistry was used to examine E-cadherin (Ecad) expression in HER-2-amplified CXPA samples (n = 35). Western blot and ELISA were used to detect sEcad in two samples with Ecad and HER-2 overexpression and CXPA cell line. Lentivirus-mediated transfection was performed to knock down sEcad in CXPA cells. The cell proliferation, wound healing, and transwell assays were used to compare sEcad-knockdown cells with cells pretreated with recombinant human sEcad (rhEcad/Fc). sEcad and HER-2 interaction was determined through co-immunoprecipitation. RNA-sequencing, differential expression analysis, GO and KEGG analysis were used to identify sEcad-related signaling pathways and their protein phosphorylation levels were verified by western blotting. RESULTS: Ecad was overexpressed in 77.1% of HER-2-positive CXPA, and sEcad was found in the CXPA cell line and two samples. sEcad promoted CXPA migration and invasion in vitro without sEcad and HER-2 interaction. sEcad-related differentially expressed genes were enriched in the IL-17, cAMP, and MAPK signaling pathways. Furthermore, sEcad activated the phosphorylation of Akt and MAPK/ERK signaling pathways. CONCLUSIONS: Most HER-2+ CXPAs express Ecad. sEcad could affect the invasiveness and migration of in vitro CXPA cells without HER-2. sEcad may be a therapeutic biomarker for CXPA patients.


Assuntos
Adenocarcinoma , Adenoma Pleomorfo , Neoplasias das Glândulas Salivares , Humanos , Adenoma Pleomorfo/patologia , Neoplasias das Glândulas Salivares/patologia , Caderinas , Glândulas Salivares/metabolismo
8.
Virus Res ; 321: 198915, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084746

RESUMO

The key structure of the interface between the spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human angiotensin-converting enzyme 2 (hACE2) acts as an essential switch for cell entry by the virus and drugs targets. However, this is largely unknown. Here, we tested three peptides of spike receptor binding domain (RBD) and found that peptide 391-465 aa is the major hACE2-interacting sites in SARS-CoV-2 spike RBD. We then identified essential amino acid residues (403R, 449Y, 454R) of peptide 391-465 aa that were critical for the interaction between the RBD and hACE2. Additionally, a pseudotyped virus containing SARS-CoV-2 spike with individual mutation (R454G, Y449F, R403G, N439I, or N440I) was determined to have very low infectivity compared with the pseudotyped virus containing the wildtype (WT) spike from reference strain Wuhan 1, respectively. Furthermore, we showed the key amino acids had the potential to drug screening. For example, molecular docking (Docking) and infection assay showed that Cephalosporin derivatives can bind with the key amino acids to efficiently block infection of the pseudoviruses with wild type spike or new variants. Moreover, Cefixime inhibited live SARS-CoV-2 infection. These results also provide a novel model for drug screening and support further clinical evaluation and development of Cephalosporin derivatives as novel, safe, and cost-effective drugs for prevention/treatment of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Aminoácidos/metabolismo , Aminoácidos Essenciais/metabolismo , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Cefixima , Humanos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-36165520

RESUMO

BACKGROUND: Cancer is a malignant disease that causes millions of deaths each year worldwide. As one of the cancer therapeutic strategies, chemotherapy is a means to destroy rapidly dividing cells. The main problem with cancer chemotherapy is the lack of selectivity of conventional chemotherapeutic drugs, leading to toxicity towards normal cells. Therefore, the discovery of anticancer agents with selectivity for fast-growing cancer cells was desirable. OBJECTIVE: In this study, we report the synthesis and identification of the novel 5-benzyl juglone as a potential anticancer agent with selectivity toward certain cancer cell lines. METHODS: An efficient synthetic method for 5-benzyl juglone has been established. The proliferation of cancer cell lines and a normal cell line treated by the target compound were studied using an MTT assay. In addition, the cell cycle arrest and apoptosis were determined by flow cytometry. RESULTS: Based on the Diels-Alder (D-A) reaction between 3,6-dimethoxy benzyne intermediate with furan, further acid-catalyzed intramolecular rearrangement and CAN-mediated oxidation, a convenient synthesis of 5-benzyl juglone has been achieved with high overall yield. The results from in vitro biological evaluation indicated that the juglone derivative exhibited potent antiproliferative activity against HCT-15 human colorectal cancer cells with an IC50 value of 12.27 µM. It exerted high inhibitory activity toward MCF-7 human breast cancer cells and, to a much lesser extent, to corresponding MCF-10A human breast epithelial normal cells with the IC50 ratio (IC50 in MCF-7 divided by IC50 in MCF-10A) of 0.62. CONCLUSION: The mechanistic investigations indicated that 5-benzyl juglone could induce cell cycle arrest at the G0/G1 phase and promote apoptosis of HCT-15 cells. The apoptotic effects possibly also contributed to its higher selectivity toward cancer cells than normal cell lines.

10.
Theor Appl Genet ; 135(9): 2993-3003, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35831461

RESUMO

KEY MESSAGE: A novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis was transferred into common wheat and mapped to chromosome 2MbL bin FL 0.49-0.66 by molecular cytogenetic analysis of 2Mb recombinants. Aegilops biuncialis, a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies identified that chromosome 2Mb in Chinese Spring (CS)-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to powdery mildew, and the resistance gene was temporarily designated as Pm2Mb. In this study, a total of 65 CS-Ae. biuncialis 2Mb recombinants were developed by ph1b-induced homoeologous recombination and they were grouped into 12 different types based on the presence of different markers of 2Mb-specificity. Segment sizes and breakpoints of each 2Mb recombinant type were further characterized using in situ hybridization and molecular marker analyses. Powdery mildew responses of each type were assessed by inoculation of each 2Mb recombinant-derived F2 progenies using the isolate E05. Combined analyses of in situ hybridization, molecular markers and powdery mildew resistance data of the 2Mb recombinants, the gene Pm2Mb was cytologically located to an interval of FL 0.49-0.66 in the long arm of 2Mb, where 19 2Mb-specific markers were located. Among the 65 2Mb recombinants, T-11 (T2DS.2DL-2MbL) and T-12 (Ti2DS.2DL-2MbL-2DL) contained a small 2MbL segment harboring Pm2Mb. Besides, a physical map of chromosome 2Mb was constructed with 70 2Mb-specific markers in 10 chromosomal bins and the map showed that submetacentric chromosome 2Mb of Ae. biuncialis was rearranged by a terminal intrachromosomal translocation. The newly developed 2Mb recombinants with powdery mildew resistance, the 2Mb-specific molecular markers and the physical map of chromosome 2Mb will benefit wheat disease breeding as well as fine mapping and cloning of Pm2Mb.


Assuntos
Aegilops , Ascomicetos , Aegilops/genética , Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Recombinação Genética , Triticum/genética
11.
Front Plant Sci ; 13: 918508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720614

RESUMO

Powdery mildew of wheat is a foliar disease that is spread worldwide. Cultivation of resistant varieties is the most effective, economical, and environmentally friendly strategy to curb this disease. Powdery mildew resistance genes (Pm) are the primary resources for resistance breeding, and new Pm genes are in constant demand. Previously, we identified Aegilops longissima chromosome 6Sl#3 as a carrier of powdery mildew resistance and designated the resistance gene as Pm6Sl. Here, we reported the design of 24 markers specific to 6Sl#3 on the basis of the full-length cDNA sequences of 6Sl#3 donor Ae. longissma accession TA1910, and the development of wheat-Ae. longissima 6Sl#3 introgression stocks by ph1b-induced homoeologous recombination. Further, 6Sl#3 introgression lines were identified and characterized by integration analysis of powdery mildew responses, in situ hybridization, and molecular markers and Pm6Sl was mapped to a distal interval of 42.80 Mb between markers Ael58410 and Ael57699 in the long arm of 6Sl#3. Two resistant recombinants, R43 (T6BS.6BL-6Sl#3L) and T27 (Ti6AS.6AL-6Sl#3L-6AL), contained segments harboring Pm6Sl with less than 8% of 6Sl#3 genomic length, and two markers were diagnostic for Pm6Sl. This study broadened powdery mildew resistance gene resources for wheat improvement and provided a fundamental basis for fine mapping and cloning of Pm6Sl to further understand its molecular mechanism of disease resistance.

12.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269925

RESUMO

Environmental stresses, especially heat and drought, severely limit plant growth and negatively affect wheat yield and quality worldwide. Heat shock factors (Hsfs) play a central role in regulating plant responses to various stresses. In this study, the wheat heat shock factor gene TaHsfA2e-5D on chromosome 5D was isolated and functionally characterized, with the goal of investigating its role in responses to heat and drought stresses. Gene expression profiling showed that TaHsfA2e-5D was expressed constitutively in various wheat tissues, most highly in roots at the reproductive stage. The expression of TaHsfA2e-5D was highly up-regulated in wheat seedlings by heat, cold, drought, high salinity, and multiple phytohormones. The TaHsfA2e-5D protein was localized in the nucleus and showed a transcriptional activation activity. Ectopic expression of the TaHsfA2e-5D in yeast exhibited improved thermotolerance. Overexpression of the TaHsfA2e-5D in Arabidopsis results in enhanced tolerance to heat and drought stresses. Furthermore, RT-qPCR analyses revealed that TaHsfA2e-5D functions through increasing the expression of Hsp genes and other stress-related genes, including APX2 and GolS1. Collectively, these results suggest that TaHsfA2e-5D functions as a positive regulator of plants' responses to heat and drought stresses, which may be of great significance for understanding and improving environmental stress tolerance in crops.


Assuntos
Arabidopsis , Triticum , Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Triticum/metabolismo
13.
Curr Med Chem ; 28(33): 6773-6804, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33820513

RESUMO

BACKGROUND: The proposed central role of cancer stem cells (CSCs) in tumor development has been extended to explain the diverse oncologic phenomena such as multidrug resistance, metastasis and tumor recurrence in clinics. Due to the enhanced expression of ATP-binding cassette transporters and anti-apoptotic factors, stagnation on G0 phase and the strong ability of self-renewal, the CSCs were highly resistant to clinical anticancer drugs. Therefore, the discovery of new drug candidates that could effectively eradicate cancer stem cells afforded promising outcomes in cancer therapy. OBJECTIVE: Natural products and their synthetic analogues are a rich source of biologically active compounds and several of them have already been recognized as potent CSCs killers. We aim to provide a collection of recently identified natural products that suppressed the survival of the small invasive CSC populations and combated the drug resistance of these cells in chemotherapy. RESULTS: These anti-CSCs natural products included flavonoids, stilbenes, quinones, terpenoids, polyketide antibiotics, steroids and alkaloids. In the present review, we highlighted the therapeutic potential of natural products and their derivatives against the proliferation and drug resistance of CSCs, their working mechanisms and related structure- activity relationships. CONCLUSION: Meanwhile, in this survey, several natural products with diverse cellular targets such as the naphthoquinone shikonin and the stilbene resveratrol were characterized as promising lead compounds for future development.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas
14.
Transl Androl Urol ; 10(2): 538-547, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718056

RESUMO

BACKGROUND: To investigate the effect of protruded median lobe (PML) on the perioperative, oncological, and urinary continence (UC) outcomes among patients underwent Retzius-sparing robot-assisted radical prostatectomy (RS-RARP). METHODS: 231 consecutive patients who had undergone RS-RARP were collected and analyzed. Patients were divided into three groups based on the PML degree: PML<5 mm (n=99); 5≤ PML <10 mm (n=91); PML ≥10 mm (n=41). The perioperative outcomes, short-term oncological, and UC outcomes were compared among the three groups. Those outcomes were also compared in patients with significant PML (>10 mm) who underwent the traditional or Retzius-sparing RARP. RESULTS: The median PML was significantly associated age (P<0.001) and prostate volume (P<0.001). Perioperative characteristics including console time, estimated blood loss (EBL), intraoperative transfusion rate, and complications were not statistically different among the three groups (P=0.647, 0.574, 0.231, 0.661, respectively). The rate of positive surgical margin (PSM) were not significantly different in the three groups (P=0.065). No significant difference regarding UC and biochemical recurrence (BCR) at 12-month follow-up was observed in the three groups (P>0.05). Comparison between the two approaches in men with significant PML showed better recovery of UC (HR =1.83, 95% CI: 1.117-3.01, log-rank P=0.002) and similar BCR (log-rank P=0.072) after RS-RARP. CONCLUSIONS: RS-RARP is an oncologically and functionally equivalent approach for patients with PML. Compared with the traditional approach, RS-RARP offers benefits regarding UC for cases with significant PML.

15.
Mini Rev Med Chem ; 21(12): 1465-1486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33438535

RESUMO

BACKGROUND: Multidrug resistance (MDR) is the resistance of cancer cells against a variety of currently used antineoplastic agents with diverse structural scaffolds and different anticancer mechanisms. It has been recognized as one of the major impediments to the successful treatment of cancer, leading to the metastasis and relapse of malignant diseases. INTRODUCTION: Collateral sensitivity (CS) is the characteristic of certain chemicals to kill the drugresistant sublines selectively over the parental cell lines from which the resistant cells were generated. The research and development of new drug candidates with collateral sensitivity will be an efficient approach to conquer multidrug resistance in cancer. We aim to provide an update on the discovery of natural products with collateral sensitivity. RESULTS AND CONCLUSION: The review focused on the characterized anticancer natural products and their derivatives with collateral sensitivity, their working mechanisms, and related structure-activity relationships, emphasizing recently identified CS compounds. According to their structural features, these MDR-targeting compounds were mainly classified into the following categories: flavonoids, terpenoids, stilbenes, alkaloids and quinones. The exploration of molecular mechanisms of collateral sensitivity and structural features of anticancer agents with collateral sensitivity provided an effective approach for the clinic treatment of MDR in cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Animais , Antineoplásicos/química , Produtos Biológicos/química , Humanos , Relação Estrutura-Atividade
16.
Mol Biol Rep ; 41(12): 7807-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25096514

RESUMO

Outer membrane proteins (OMPs) represent an important class of proteins that are observed in gram-negative bacteria, mitochondria and chloroplasts. These proteins play diverse biological roles in protein translocation, cell-cell communication and signal transduction. A variety of OMPs have been identified in the gastrointestinal pathogen Helicobacter pylori (H. pylori) since it was first isolated in 1983. Among these proteins, outer membrane inflammatory protein A (OipA), which is encoded by hopH and unique to this pathogen, is a differentially expressed outer membrane protein that has been confirmed to be directly linked to H. pylori colonization, as well as to the pathogenesis of H. pylori and disease outcome. In this review, we will describe the progress of recent studies on OipA, particularly those on the functions and biological significance of this unique protein.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Humanos , Interleucina-8/metabolismo , Polimorfismo Genético , Prognóstico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...