Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Plant Sci ; 14: 1323453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148868

RESUMO

Introduction: With continuously increasing labor costs, an urgent need for automated apple- Qpicking equipment has emerged in the agricultural sector. Prior to apple harvesting, it is imperative that the equipment not only accurately locates the apples, but also discerns the graspability of the fruit. While numerous studies on apple detection have been conducted, the challenges related to determining apple graspability remain unresolved. Methods: This study introduces a method for detecting multi-occluded apples based on an enhanced YOLOv5s model, with the aim of identifying the type of apple occlusion in complex orchard environments and determining apple graspability. Using bootstrap your own atent(BYOL) and knowledge transfer(KT) strategies, we effectively enhance the classification accuracy for multi-occluded apples while reducing data production costs. A selective kernel (SK) module is also incorporated, enabling the network model to more precisely identify various apple occlusion types. To evaluate the performance of our network model, we define three key metrics: APGA, APTUGA, and APUGA, representing the average detection accuracy for graspable, temporarily ungraspable, and ungraspable apples, respectively. Results: Experimental results indicate that the improved YOLOv5s model performs exceptionally well, achieving detection accuracies of 94.78%, 93.86%, and 94.98% for APGA, APTUGA, and APUGA, respectively. Discussion: Compared to current lightweight network models such as YOLOX-s and YOLOv7s, our proposed method demonstrates significant advantages across multiple evaluation metrics. In future research, we intend to integrate fruit posture and occlusion detection to f]urther enhance the visual perception capabilities of apple-picking equipment.

2.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297367

RESUMO

The effectiveness evaluation of the traceability system (TS) is a tool for enterprises to achieve the required traceability level. It plays an important role not only for planning system implementation before development but also for analyzing system performance once the system is in use. In the present work, we evaluate traceability granularity using a comprehensive and quantifiable model and try to find its influencing factors via an empirical analysis with 80 vegetable companies in Tianjin, China. We collect granularity indicators mostly through the TS platform to ensure the objectivity of the data and use the TS granularity model to evaluate the granularity score. The results show that there is an obvious imbalance in the distribution of companies as a function of score. The number of companies (21) scoring in the range (50,60) exceeded the number in the other score ranges. Furthermore, the influencing factors on traceability granularity were analyzed using a rough set method based on nine factors pre-selected using a published method. The results show that the factor "number of TS operation staff" is deleted because it is unimportant. The remaining factors rank according to importance as follows: Expected revenue > Supply chain (SC) integration degree > Cognition of TS > Certification system > Company sales > Informationization management level > System maintenance investment > Manager education level. Based on these results, the corresponding implications are given with the goal of (i) establishing the market mechanism of high price with high quality, (ii) increasing government investment for constructing the TS, and (iii) enhancing the organization of SC companies.

3.
Clin Res Hepatol Gastroenterol ; 47(7): 102165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330005

RESUMO

BACKGROUND: The effects of postoperative adjuvant therapy for high-risk recurrent hepatocellular carcinoma (HCC) in immunotherapy are still under investigation. This study evaluated the preventive effects and safety of postoperative adjuvant therapy, including atezolizumab, and bevacizumab, against the early recurrence of HCC with high-risk factors. METHODS: The complete data of HCC patients who underwent radical hepatectomy with or without postoperative adjuvant therapy after two-year follow-up were analyzed retrospectively. The patients were divided into high-risk or low-risk groups based on HCC pathological characteristics. High-risk recurrence patients were divided into postoperative adjuvant treatment and control groups. Due to the difference in approaches in postoperative adjuvant therapies, they were divided into transarterial chemoembolization (TACE), atezolizumab, and bevacizumab (T + A), and combination (TACE+T + A) groups. The two-year recurrence-free survival rate (RFS), overall survival rate (OS), and associated factors were analyzed. RESULTS: The RFS in the high-risk group was significantly lower than that in the low-risk group (P = 0.0029), and the two-year RFS in the postoperative adjuvant treatment group was significantly higher than that in the control group (P = 0.040). No severe complications were observed in those who received atezolizumab and bevacizumab or other therapy. CONCLUSION: Postoperative adjuvant therapy was related to two-year RFS. TACE, T + A, and the combination of these two approaches were comparable in reducing the early recurrence of HCC without severe complications.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Bevacizumab/uso terapêutico , Estudos Retrospectivos , Quimioembolização Terapêutica/efeitos adversos , Hepatectomia
4.
Curr Mol Med ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259211

RESUMO

Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.

5.
Cell Mol Gastroenterol Hepatol ; 16(3): 385-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245564

RESUMO

BACKGROUND & AIMS: The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS: Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS: Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of ß-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS: SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.


Assuntos
Neoplasias Colorretais , Exossomos , Neoplasias Hepáticas , Camundongos , Animais , Metaloproteinase 2 da Matriz , Regeneração Hepática , Esfingomielina Fosfodiesterase , Ceramidas , Neoplasias Colorretais/genética , Neoplasias Hepáticas/metabolismo
6.
Hepatobiliary Surg Nutr ; 12(1): 3-19, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36860242

RESUMO

Background: Lipid dysregulation plays a fundamental role in nonalcoholic steatohepatitis (NASH), which is an emerging critical risk factor that aggravates hepatic ischemia/reperfusion (I/R) injury. However, the specific lipids that mediate the aggressive I/R injury in NASH livers have not yet been identified. Methods: The mouse model of hepatic I/R injury on NASH was established on C56B/6J mice by first feeding the mice with a Western-style diet to induce NASH, then the NASH mice were subjected to surgical procedures to induce hepatic I/R injury. Untargeted lipidomics were performed to determine hepatic lipids in NASH livers with I/R injury through ultra-high performance liquid chromatography coupled with mass spectrometry. The pathology associated with the dysregulated lipids was examined. Results: Lipidomics analyses identified cardiolipins (CL) and sphingolipids (SL), including ceramides (CER), glycosphingolipids, sphingosines, and sphingomyelins, as the most relevant lipid classes that characterized the lipid dysregulation in NASH livers with I/R injury. CER were increased in normal livers with I/R injury, and the I/R-induced increase of CER was further augmented in NASH livers. Metabolic pathway analysis revealed that the enzymes involved in the synthesis and degradation of CER were highly upregulated in NASH livers with I/R injury, including serine palmitoyltransferase 3 (Sptlc3), ceramide synthase 2 (Cers2), neutral sphingomyelinase 2 (Smpd3), and glucosylceramidase beta 2 (Gba2) that produced CER, and alkaline ceramidase 2 (Acer2), alkaline ceramidase 3 (Acer3), sphingosine kinase 1 (Sphk1), sphingosine-1-phosphate lyase (Sgpl1), and sphingosine-1-phosphate phosphatase 1 (Sgpp1) that catalyzed the degradation of CER. CL were not affected by I/R challenge in normal livers, but CL was dramatically reduced in NASH livers with I/R injury. Consistently, metabolic pathway analyses revealed that the enzymes catalyzing the generation of CL were downregulated in NASH-I/R injury, including cardiolipin synthase (Crls1) and tafazzin (Taz). Notably, the I/R-induced oxidative stress and cell death were found to be aggravated in NASH livers, which were possibly mediated by the reduction of CL and accumulation of CER. Conclusions: The I/R-induced dysregulation of CL and SL were critically rewired by NASH, which might potentially mediate the aggressive I/R injury in NASH livers.

7.
Compr Rev Food Sci Food Saf ; 21(5): 4189-4209, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904269

RESUMO

Food cold chain logistics (FCCL) is a systematic engineering process involving the use of a low-temperature environment to maintain the quality and safety of perishable food and reduce food loss and waste (FLW). From a mechanism perspective, FCCL must balance resource costs for a required level of food quality and safety with the costs of greenhouse gas (GHG) emissions. In the context of global warming, the sustainability trade-off between FLW and environmental impact has recently become an important topic in research on efficient, green FCCL. This is mainly reflected in technological innovation, management optimization, and policy responses. With a focus on three levels (micro, meso, macro), this review analyzes current research areas and the gaps and challenges of FCCL in microenvironmental monitoring, life cycle assessment (LCA), and global impact. Future trends pertaining to FCCL in technology, management, and industry and sustainable development are also summarized. Future trends involving sustainable FCCL must be intelligent, systematic, and low carbon. Industry empowerment through next-generation information technologies (e.g., IoT, AI, big data, blockchain) will promote the multidimensional perception, real-time information transmission, and sustainable control of microenvironmental monitoring, as well as support LCA management transformation from fragmentation to system integration. From a macro level, due to the serious global loss of perishable food, the FCCL scale demand is growing greatly, causing a huge environmental burden. Global cooperation, low-carbon consensus, and appropriate policies will become the basis for promoting sustainable FCCL development.


Assuntos
Gases de Efeito Estufa , Carbono , Alimentos , Refrigeração
8.
Food Control ; 137: 108940, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35261485

RESUMO

Cold chains are effective in maintaining food quality and reducing food losses, especially for long-distance international food commerce. Several recent reports have demonstrated that frozen foods are serving as carriers of SARS-CoV-2 and transmitting the virus from one place to another without any human-to-human contact. This finding highlights significant difficulties facing efforts to control the spread of COVID-19 and reveal a transmission mechanism that may have substantially worsened the global pandemic. Traditional food cold chain management practices do not include specific procedures related to SARS-CoV-2-related environmental control and information warnings; therefore, such procedures are urgently needed to allow food to be safely transported without transmitting SARS-CoV-2. In this study, a conjoint analysis of COVID-19 and food cold chain systems was performed, and the results of this analysis were used to develop an improved food cold chain management system utilizing internet of things (IoT) and blockchain technology. First, 45 COVID-19-related food cold chain incidents in China, primarily involving frozen meat and frozen aquatic products, were summarized. Critical food cold chain control points related to COVID-19 were analyzed, including temperature and cold chain requirements. A conceptual system structure to improve food cold chain management, including information sensing, chain linking and credible tracing, was proposed. Finally, a prototype system, which consisted of cold chain environment monitoring equipment, a cold chain blockchain platform, and a food chain management system, was developed. The system includes: 1) a defining characteristic of the newly developed food cold chain system presented here is the use of IoT technology to enhance real-time environmental information sensing capacity; 2) a hybrid data storage mechanism consisting of off-chain and on-chain systems was applied to enhance data security, and smart contracts were used to establish warning levels for food cold chain incidents; and 3) a hypothetical food cold chain failure scenario demonstration in which information collection, intelligent decision making, and cold chain tracing were integrated and automatically generated for decision-making. By integrating existing technologies and approaches, our study provides a novel solution to improve traditional food cold chain management and thus meet the challenges associated with the COVID-19 pandemic. Although our system has been shown to be effective, subsequent studies are still required to develop precise risk evaluation models for SARs-CoV-2 in food cold chains and more precisely control the entire process. By ensuring food safety and reliable traceability, our system could also contribute to the formulation of appropriate mechanisms for international cooperation and minimize the effect of the COVID-19 pandemic on international food commerce.

9.
Crit Rev Food Sci Nutr ; 62(3): 679-692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33016094

RESUMO

Processed food has become an indispensable part of the human food chain. It provides rich nutrition for human health and satisfies various other requirements for food consumption. However, establishing traceability systems for processed food faces a different set of challenges compared to primary agro-food, because of the variety of raw materials, batch mixing, and resource transformation. In this paper, progress in the traceability of processed food is reviewed. Based on an analysis of the food supply chain and processing stage, the problem of traceability in food processing results from the transformations that the resources go through. Methods to implement traceability in food processing, including physical separation in different lots, defining and associating batches, isotope analysis and DNA tracking, statistical data models, internal traceability system development, artificial intelligence (AI), and blockchain-based approaches are summarized. Traceability is evaluated based on recall effects, TRUs (traceable resource units), and comprehensive granularity. Different methods have different advantages and disadvantages. The combined application of different methods should consider the specific application scenarios in food processing to improve granularity. On the other hand, novel technologies, including batch mixing optimization with AI, quality forecasting with big data, and credible traceability with blockchain, are presented in the context of improving traceability performance in food processing.


Assuntos
Inteligência Artificial , Blockchain , Manipulação de Alimentos , Abastecimento de Alimentos , Humanos
10.
Cell Death Dis ; 12(4): 324, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771984

RESUMO

Post-hepatectomy liver dysfunction is a life-threatening morbidity that lacks efficient therapy. Bioactive lipids involved in macrophage polarization crucially regulate tissue injury and regeneration. Herein, we investigate the key bioactive lipids that mediate the cytotherapeutic potential of polarized-macrophage for post-hepatectomy liver dysfunction. Untargeted lipidomics identified elevation of ceramide (CER) metabolites as signature lipid species relevant to M1/M2 polarization in mouse bone-marrow-derived-macrophages (BMDMs). M1 BMDMs expressed a CER-generation-metabolic pattern, leading to elevation of CER; M2 BMDMs expressed a CER-breakdown-metabolic pattern, resulting in upregulation of sphingosine-1-phosphate (S1P). After infusing M1- or M2-polarized BMDMs into the mouse liver after hepatectomy, we found that M1-BMDM infusion increased M1 polarization and CER accumulation, resulting in exaggeration of hepatocyte apoptosis and liver dysfunction. Conversely, M2-BMDM infusion enhanced M2 polarization and S1P generation, leading to alleviation of liver dysfunction with improved hepatocyte proliferation. Treatment of exogenous CER and S1P or inhibition CER and S1P synthesis by siRNA targeting relevant enzymes further revealed that CER induced apoptosis while S1P promoted proliferation in post-hepatectomy primary hepatocytes. In conclusion, CER and S1P are uncovered as critical lipid mediators for M1- and M2-polarized BMDMs to promote injury and regeneration in the liver after hepatectomy, respectively. Notably, the upregulation of hepatic S1P induced by M2-BMDM infusion may have therapeutic potential for post-hepatectomy liver dysfunction.


Assuntos
Ceramidas/metabolismo , Hepatectomia/métodos , Fígado/patologia , Lisofosfolipídeos/metabolismo , Metabolômica/métodos , Esfingosina/análogos & derivados , Animais , Modelos Animais de Doenças , Humanos , Fígado/cirurgia , Camundongos , Esfingosina/metabolismo , Transfecção
11.
Cancer Manag Res ; 13: 2307-2317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732023

RESUMO

BACKGROUND: Liver hepatocellular carcinoma (HCC) is the third most common cause of death by cancer and has a high mortality world-widely. Approximately 75-85% of primary liver cancers are caused by HCC. Uncovering novel genes with prognostic significance would shed light on improving the HCC patient's outcome. OBJECTIVE: In this research, we aim to identify novel prognostic biomarkers in hepatocellular carcinoma. METHODS: Integrated proteomics and bioinformatics analysis were performed to investigate the expression landscape of prognostic biomarkers in 24 paired HCC patients. RESULTS: As a result, eight key genes related to prognosis, including ACADS, HSD17B13, PON3, AMDHD1, CYP2C8, CYP4A11, SLC27A5, CYP2E1, were identified by comparing the weighted gene co-expression network analysis (WGCNA), proteomic differentially expressed genes (DEGs), proteomic turquoise module, The Cancer Genome Atlas (TCGA) cohort DEGs of HCC. Furthermore, we trained and validated eight pivotal genes integrating these independent clinical variables into a nomogram with superior accuracy in predicting progression events, and their lower expression was associated with a higher stage/risk score. The Gene Set Enrichment Analysis (GSEA) further revealed that these key genes showed enrichment in the HCC regulatory pathway. CONCLUSION: All in all, we found that these eight genes might be the novel potential prognostic biomarkers for HCC and also provide promising insights into the pathogenesis of HCC at the molecular level.

12.
Cell Death Dis ; 12(1): 15, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414412

RESUMO

Hepatocellular carcinoma (HCC) has been extensively studied as one of the most aggressive tumors worldwide. However, its mortality rate remains high due to ideal diagnosis and treatment strategies. Uncovering novel genes with prognostic significance would shed light on improving the HCC patient's outcome. In our study, we applied data-independent acquisition (DIA) quantitative proteomics to investigate the expression landscape of 24 paired HCC patients. A total of 1029 differentially expressed proteins (DEPs) were screened. Then, we compared DEPs in our cohort with the differentially expressed genes (DEGs) in The Cancer Genome Atlas, and investigated their prognostic significance, and found 183 prognosis-related genes (PRGs). By conducting protein-protein interaction topological analysis, we identified four subnetworks with prognostic significance. Acyl-CoA oxidase 2 (ACOX2) is a novel gene in subnetwork1, encodes a peroxisomal enzyme, and its function in HCC was investigated in vivo and in vitro. The lower expression of ACOX2 was validated by real-time quantitative PCR, immunohistochemistry, and Western blot. Cell Counting Kit-8 assay, wound healing, and transwell migration assay were applied to evaluate the impact of ACOX2 overexpression on the proliferation and migration abilities in two liver cancer cell lines. ACOX2 overexpression, using a subcutaneous xenograft tumor model, indicated a tumor suppressor role in HCC. To uncover the underlying mechanism, gene set enrichment analysis was conducted, and peroxisome proliferator-activated receptor-α (PPARα) was proposed to be a potential target. In conclusion, we demonstrated a PRG ACOX2, and its overexpression reduced the proliferation and metastasis of liver cancer in vitro and in vivo through PPARα pathway.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Oxirredutases/fisiologia , PPAR alfa/metabolismo , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade
13.
Free Radic Biol Med ; 159: 136-149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738398

RESUMO

BACKGROUND: Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL. METHODS: Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes. RESULTS: Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL. CONCLUSIONS: Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Traumatismo por Reperfusão , Animais , Hepatócitos/metabolismo , Humanos , Isquemia , Lisofosfolipídeos , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/genética , Transdução de Sinais , Esfingosina/análogos & derivados
14.
Langenbecks Arch Surg ; 405(5): 603-611, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32710380

RESUMO

PURPOSE: Emerging evidences have raised concerns about electrolyte disorders caused by restrictive fluid management in the enhanced recovery after surgery (ERAS) protocol. This study aims to investigate the morbidity and treatment of electrolyte disorders associated with ERAS in patients undergoing hepato-pancreato-biliary (HPB) surgery. METHODS: Clinical data from 157 patients under the ERAS program and 166 patients under the traditional (Non-ERAS) program after HPB surgery were retrospectively analyzed. Risk factors and predictive factors of postoperative electrolyte disorders were analyzed by logistic regression analysis and receiver operator characteristic (ROC) curve analysis, respectively. RESULTS: The average of intravenous fluid, sodium, chloride, and potassium supplementation after surgery were significantly lower in the ERAS group. Hypokalemia was the most common type of electrolyte disorders in the ERAS group, whose incidence was substantially increased compared to that in the Non-ERAS group [28.77% vs. 8.97%, p < 0.001, on postoperative (POD) 5]. Logistic regression analysis identified the ERAS program and age as independent risk factors of hypokalemia. ROC curve analysis identified serum potassium levels below 3.76 mmol/L on POD 3 (area under curve 0.731, sensitivity 58.54%, specificity 82.69%) as a predictive factor for postoperative hypokalemia in ERAS patients. Oral supplementation at an average of 35.41 mmol potassium per day was effective in restoring the ERAS-associated hypokalemia. CONCLUSIONS: ERAS procedures were particularly associated with a lower supplementation of potassium and a higher incidence of hypokalemia in patients after HPB surgery. Oral potassium supplementation could be an adopted ERAS program for the elderly undergoing HPB surgery.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Recuperação Pós-Cirúrgica Melhorada , Hidratação/efeitos adversos , Hipopotassemia/etiologia , Complicações Pós-Operatórias/etiologia , Desequilíbrio Hidroeletrolítico/etiologia , Doenças Biliares/cirurgia , China , Feminino , Humanos , Hipopotassemia/prevenção & controle , Hepatopatias/cirurgia , Masculino , Pessoa de Meia-Idade , Pancreatopatias/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Potássio/administração & dosagem , Estudos Retrospectivos , Fatores de Risco , Desequilíbrio Hidroeletrolítico/prevenção & controle
16.
Int Immunopharmacol ; 83: 106386, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193100

RESUMO

This report sought to establish the mechanistic role of sirtuin-1 (Sirt1), a NAD+-dependent deacetylase in the modulation of primary biliary cholangitis (PBC) pathogenesis. 64 PBC patients (diagnosed based on practice guidelines for American Association for the Study of Liver Diseases) and 60 healthy controls were included in this study. Clinically, the mRNA expression level of Sirt1 in macrophages differentiated from peripheral blood mononuclear cells (PBMCs) of PBC subjects substantially decreased when compared with the healthy controls but not in other Sirt family genes (Sirt2-7). Consistent with clinical results, a PBC murine model showed that levels of Sirt1 significantly decreased in the liver and Kupffer cells of mice treated with polyinosinic/polycytidylic acid (poly I:C) for 16 weeks. A TAK1 inhibitor (NG25) prevented the poly I:C-induced Sirt1 protein level decreasing in Kupffer cells but not MAPK inhibitor. Sirt1 activators resveratrol (RSV) and SRT1720 (SRT) ameliorated poly I:C-induced hepatic injury observed via histopathologic analysis and decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the PBC murine model. Furthermore, Sirt1 activators significantly reduced pro-inflammatory cytokines levels such as interleukin-1 beta (IL-1ß), IL-6, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in serum in poly I:C-induced mice. In addition, Sirt1 activators significantly inhibited the phosphorylated and acetylated levels of the RelA/p65 subunit of the nuclear transcription factor (NF-κB) but not the interferon regulatory factor (IRF) 3 in poly I:C-injured mice livers. Significantly, RSV improved the interaction between Sirt1 and p65, which may contribute to the decreased activity of NF-κB. In summary, the Sirt1 signaling pathway plays an essential role in the development of PBC and this may represent a novel approach and target for the treatment of PBC.


Assuntos
Cirrose Hepática Biliar/metabolismo , Fígado/patologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Transdução de Sinais
17.
Cell Death Dis ; 11(1): 28, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949129

RESUMO

Overload of palmitic acids is linked to the dysregulation of ceramide metabolism in nonalcoholic steatohepatitis (NASH), and ceramides are important bioactive lipids mediating the lipotoxicity of palmitic acid in NASH. However, much remains unclear about the role of ceramidases that catalyze the hydrolysis of ceramides in NASH. By analyzing the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, we found that alkaline ceramidase 3 (ACER3) is upregulated in livers of patients with NASH. Consistently, we found that Acer3 mRNA levels and its enzymatic activity were also upregulated in mouse livers with NASH induced by a palmitate-enriched Western diet (PEWD). Moreover, we demonstrated that palmitate treatment also elevated Acer3 mRNA levels and its enzymatic activity in mouse primary hepatocytes. In order to investigate the function of Acer3 in NASH, Acer3 null mice and their wild-type littermates were fed a PEWD to induce NASH. Knocking out Acer3 was found to augment PEWD-induced elevation of C18:1-ceramide and alleviate early inflammation and fibrosis but not steatosis in mouse livers with NASH. In addition, Acer3 deficiency attenuated hepatocyte apoptosis in livers with NASH. These protective effects of Acer3 deficiency were found to be associated with suppression of hepatocellular oxidative stress in NASH liver. In vitro studies further revealed that loss of ACER3/Acer3 increased C18:1-ceramide and inhibited apoptosis and oxidative stress in mouse primary hepatocytes and immortalized human hepatocytes induced by palmitic-acid treatment. These results suggest that ACER3 plays an important pathological role in NASH by mediating palmitic-acid-induced oxidative stress.


Assuntos
Ceramidase Alcalina/metabolismo , Apoptose/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Estresse Oxidativo/genética , Ceramidase Alcalina/deficiência , Ceramidase Alcalina/genética , Animais , Sobrevivência Celular/genética , Cromatografia Líquida , Dieta Ocidental , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Inflamação/dietoterapia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Palmítico/farmacologia , Espectrometria de Massas em Tandem , Regulação para Cima
18.
Onco Targets Ther ; 12: 8367-8378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632084

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. MicroRNA-942 (miR-942) plays a critical role in promoting proliferation and metastasis of cancer cells and is associated with poor prognosis in some types of cancers. However, the prognostic value of miR-942 and its functional role in HCC remain unclear. MATERIALS AND METHODS: Real-time PCR (RT-PCR) was used to detect the expression of miR-942 in HCC tissues and adjacent normal liver tissues. Next, the correlations between miR-942 expression and clinicopathological parameters including the survival rate were analyzed. Interaction between miR-942 and ribonucleotide reductase regulatory TP53 inducible subunit M2B (RRM2B) was determined by RT-PCR, Western blot and luciferase assay. The biological influence of miR-942 on HCC cell lines was studied using CCK-8 assay, colony formation assay and transwell assay in vitro. Western blot and RT-PCR were used to analyze the change of downstream genes after miR-942 mimics transfection. RESULTS: miR-942 was significantly up-regulated in HCC. Its high expression was associated with serum alanine transaminase level (P=0.0350), tumor size (P=0.0195), T stage (P=0.0045) and lymphatic metastasis (P=0.0013). High expression of miR-942 was associated with shorter overall survival and disease-free survival time of HCC patients. RRM2B was validated as a target gene of miR-942. miR-942 mimics markedly promoted the malignant phenotypes of Huh7 and MHCC97H cell lines, while its inhibitor had the opposite effect. miR-942 can regulate the downstream genes of RRM2B including Egr-1 and PTEN, markers of epithelial-mesenchymal transition and matrix metalloproteinases. CONCLUSION: miR-942 may serve as a potential biomarker for HCC and its inhibitor may be a therapeutic agent for the treatment of this deadly disease.

19.
Food Chem ; 275: 497-503, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724225

RESUMO

This study develops a reliable radial basis function neural networks (RBFNNs) to estimate freshness for tilapia fillets stored under non-isothermal conditions by using optimal wavelengths from hyperspectral imaging (HSI). The results show that, for tilapia fillet stored at -3, 0, 4, 10, and 15 °C and non-isothermal conditions, total volatile basic nitrogen (TVB-N), total aerobic counts (TAC), and the K value increase whereas sensory scores decrease with increasing storage time. To simplify the models, nine optimal wavelengths were selected by using the successive projections algorithm (SPA), following which SPA-RBFNN models were built based on the selected wavelengths and the values of TVB-N, TAC, K, and sensory evaluations for tilapia fillets store isothermally. The ability of the models based on HSI to predict the freshness indicators were verified for tilapia fillets stored under non-isothermal conditions. HSI thus has an excellent potential for nondestructive determination of freshness in tilapia fillets.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Redes Neurais de Computação , Alimentos Marinhos , Temperatura , Tilápia , Animais , Nitrogênio/análise , Alimentos Marinhos/análise , Alimentos Marinhos/microbiologia , Tilápia/microbiologia
20.
Compr Rev Food Sci Food Saf ; 17(4): 860-877, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33350114

RESUMO

Innovations in food packaging systems will help meet the evolving needs of the market, such as consumer preference for "healthy" and high-quality food products and reduction of the negative environmental impacts of food packaging. Emerging concepts of active and intelligent packaging technologies provide numerous innovative solutions for prolonging shelf-life and improving the quality and safety of food products. There are also new approaches to improving the passive characteristics of food packaging, such as mechanical strength, barrier performance, and thermal stability. The development of sustainable or green packaging has the potential to reduce the environmental impacts of food packaging through the use of edible or biodegradable materials, plant extracts, and nanomaterials. Active, intelligent, and green packaging technologies can work synergistically to yield a multipurpose food-packaging system with no negative interactions between components, and this aim can be seen as the ultimate future goal for food packaging technology. This article reviews the principles of food packaging and recent developments in different types of food packaging technologies. Global patents and future research trends are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...