Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(5): 3458-3470, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270100

RESUMO

Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.

2.
J Colloid Interface Sci ; 603: 856-863, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34242989

RESUMO

Heterogeneous activation of peroxymonosulfate (PMS) is one of the most promising techniques for wastewater treatment. Herein, an ingenious system by coupling of photocatalysis and PMS activation was developed, using hollow-structured amorphous prussian blue (A-PB) decorated on graphitic carbon nitride (g-C3N4) as the catalyst. Degradation of bisphenol A (BPA) via the A-PB-g-C3N4 mediated PMS activation under visible light (Vis) was systematically investigated. Astonishingly, it was found that ~ 82.0%, 92.6%, 98.2% and 99.3% of BPA (40 mg/L) were removed within 2, 4, 6 and 7 min, respectively, suggesting the extremely strong oxidizing capacity of the A-PB-g-C3N4/PMS/Vis system. Synergistic effect between the decorated A-PB and the g-C3N4 substrate promoted the Fe(III)/Fe(II) redox cycling and facilitated the charge transfer at the A-PB/g-C3N4 heterojunction interface. As a result, both photocatalysis and heterogeneous activation of PMS were boosted in the A-PB-g-C3N4/PMS/Vis system, leading to the production of large amount of reactive oxygen species (ROS). The various ROS (SO4•-, HO•, •O2- and 1O2) was responsible for the ultrafast degradation of BPA. Moreover, the A-PB-g-C3N4 catalyst also exhibited outstanding reusability and stability, retaining 98.9% of the removal percentage for BPA after five consecutive reaction cycles. This study suggests that the A-PB-g-C3N4 can be an all-rounder to bridge photocatalysis and PMS activation, and shed a new light on the application of multiple ROS for the ultrafast elimination of micropollutants from wastewater.


Assuntos
Compostos Férricos , Peróxidos , Ferrocianetos , Grafite , Compostos de Nitrogênio
3.
Microbes Infect ; 21(3-4): 163-169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30447395

RESUMO

Coagulase (Coa) secreted by Staphylococcus aureus is associated with the establishment of staphylococcal disease, which activates host prothrombin and generates fibrin shields. The R domain of Coa, consisting of several conserved repeats, is important in immune evasion during S. aureus infection. However, previous research showed that the Coa R domain induced very weak specific antibody responses. In this study, we constructed a new R domain, CoaR6, consisting of 6 repeats that occur most frequently in clinical isolates. By fusing CoaR6 with Hc, the C-terminal fragment of the heavy chain of tetanus neurotoxin, we successfully increased anti-CoaR6 IgG levels in immunized mice which were hardly detected in mice immunized with CoaR6 plus alum. To further improve anti-CoaR6 responses, the combination adjuvants alum plus CpG were formulated with the antigen and exhibited a significantly higher specific antibody response. Moreover, active Th1/Th17 immune responses were observed in Hc-CoaR6 immunized group rather than CoaR6. Active immunization of Hc-CoaR6 with alum plus CpG showed protective effects in a peritonitis model induced by two S. aureus strains with different coagulase types. Our results provided strategies to improve the immunogenicity of R domain and supporting evidences for R domain to be an S. aureus vaccine candidate.


Assuntos
Proteínas de Bactérias/imunologia , Coagulase/imunologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coagulase/química , Coagulase/genética , Coagulase/metabolismo , Citocinas/imunologia , Imunidade Celular , Metaloendopeptidases/genética , Camundongos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/administração & dosagem , Análise de Sobrevida , Toxina Tetânica/genética , Vacinação
4.
Front Microbiol ; 8: 2347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238329

RESUMO

Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.

5.
BMC Genomics ; 18(1): 402, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535754

RESUMO

BACKGROUND: Brucella spp. are Gram-negative, facultative intracellular pathogens that cause brucellosis in both humans and animals. The B. abortus vaccine strain 104 M is the only vaccine available in China for the prevention of brucellosis in humans. Although the B. abortus 104 M genome has been fully sequenced, the current genome annotations are not yet complete. In addition, the main mechanisms underpinning its residual toxicity and vaccine-induced immune protection have yet to be elucidated. Mapping the proteome of B. abortus 104 M will help to improve genome annotation quality, thereby facilitating a greater understanding of its biology. RESULTS: In this study, we utilized a proteogenomic approach that combined subcellular fractionation and peptide fractionation to perform a whole-proteome analysis and genome reannotation of B. abortus 104 M using high-resolution mass spectrometry. In total, 1,729 proteins (56.3% of 3,072) including 218 hypothetical proteins were identified using the culture conditions that were employed this study. The annotations of the B. abortus 104 M genome were also refined following identification and validation by reverse transcription-PCR. In addition, 14 pivotal virulence factors and 17 known protective antigens known to be involved in residual toxicity and immune protection were confirmed at the protein level following induction by the 104 M vaccine. Moreover, a further insight into the cell biology of multichromosomal bacteria was obtained following the elucidation of differences in protein expression levels between the small and large chromosomes. CONCLUSIONS: The work presented in this report used a proteogenomic approach to perform whole-proteome analysis and genome reannotation in B. abortus 104 M; this work helped to improve genome annotation quality. Our analysis of virulence factors, protective antigens and other protein effectors provided the basis for further research to elucidate the mechanisms of residual toxicity and immune protection induced by the 104 M vaccine. Finally, the potential link between replication dynamics, gene function, and protein expression levels in this multichromosomal bacterium was detailed.


Assuntos
Vacina contra Brucelose , Brucella abortus/genética , Brucella abortus/imunologia , Proteogenômica , Antígenos de Bactérias/imunologia , Brucella abortus/metabolismo , Cromossomos Bacterianos/genética , Humanos , Anotação de Sequência Molecular , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
PLoS One ; 11(2): e0149460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26926145

RESUMO

Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Peritonite/microbiologia , Sepse/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Peritonite/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Ligação Proteica , Sepse/tratamento farmacológico , Análise de Sequência de DNA , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA