Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714372

RESUMO

Enhancers are cis-regulatory DNA elements that positively regulate the transcription of target genes in a tissue-specific manner, and dysregulation of target genes could lead to various diseases, such as cancer. Recent studies have shown that enhancers can regulate microRNAs (miRNAs) and participate in their biological synthesis. However, the network of enhancer-regulated miRNAs across multiple cancers is still unclear. Here, a total of 2,418 proximal enhancer-miRNA interactions and 1,280 distal enhancer-miRNA interactions were identified through the integration of genomic distance, co-expression, and 3D genome data in 31 cancers. The results showed that both proximal and distal interactions exhibited a significant cancer type-specific feature trend at the tissue level rather than at the single-cell level, and there was a noteworthy positive correlation between the expression of the miRNA and the number of enhancers regulating the same miRNA in most cancers. Furthermore, we found that there was a high correlation between the formation of enhancer-miRNA pairs and the expression of enhancer RNAs (eRNAs) whether in distal or proximal regulation. The characteristics analysis showed that miRes (enhancers that regulated miRNAs) and non-miRes presented significant differences in sequence conservation, guanine-cytosine (GC) content, and histone modification signatures. Notably, GC content, H3K4me1, and H3K36me3 were present differently between distal and proximal regulation, suggesting that they might participate in chromosome looping of enhancer-miRNA interactions. Finally, we introduced a case study, enhancer: chr1:1186391-1186507 ∼ miR-200a was highly relevant to the survival of thyroid cancer patients and a cis-eQTL SNP on the enhancer affected the expression of the TNFRSF18 gene as a tumor suppressor.

2.
J Geriatr Cardiol ; 14(7): 473-480, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28868076

RESUMO

BACKGROUND: In type 2 diabetes mellitus (T2DM), high-density lipoprotein (HDL) impairs its anti-atherogenic properties and even develops to a pro-inflammatory and pro-atherogenic phenotype because of abnormal compositions and modifications. In this study, we examined the effects and the related mechanisms of glycation of HDL on the proliferation and migration of vascular smooth muscle cells (VSMCs). METHODS & RESULTS: Glycated HDL (G-HDL) was modified with D-glucose (25 mmol/L) in vitro. Diabetic HDL (D-HDL) was isolated from T2DM patients. Rat VSMCs were isolated from the thoracic aortas. Human VSMCs were obtained from ScienCell Research Laboratories. Alpha-actin was detected through immunofluorescence. VSMC proliferation was assayed by Cell Count. VSMC migration was determined by transwell chamber and scratch-wound assay. Intracellular reactive oxygen species (ROS) was detected based on ROS-mediated 2',7'-dichlorofluorescein (DCFH-DA) fluorescence. Compared to native HDL (N-HDL), G-HDL remarkably promoted VSMC proliferation and migration in the dose and time-dependent manners. In addition, G-HDL enhanced ROS generation in VSMCs. However, the ROS scavenger, N-acetylcysteine, efficiently decreased ROS production and subsequently inhibited the proliferation of VSMCs induced by G-HDL. Similarly, D-HDL from T2DM patients also promoted ROS release and VSMC proliferation and migration. CONCLUSIONS: HDL either glycated in vitro or isolated from T2DM patients triggered VSMC proliferation, migration, and oxidative stress. These results might partly interpret the higher morbidity of cardiovascular disease in T2DM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...