Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2306108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815215

RESUMO

As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.

2.
Adv Mater ; 35(44): e2304532, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595959

RESUMO

The efficient catalysis of nitrogen (N2 ) into high-value N-containing products plays a crucial role in the N economic cycle. However, weak N2 adsorption and invalid N2 activation remain two major bottlenecks in rate-determining steps, leading to low N2 fixation performance. Herein, an effective dual active sites photocatalyst of polyoxometalates (POMs)-based metal-organic frameworks (MOFs) is highlighted via altering coordination microenvironment and inducing directional shunting of photogenerated carriers to facilitate N2 /catalyst interaction and enhance oxidation performance. MOFs create more open unsaturated metal cluster sites with unoccupied d orbital possessing Lewis acidity to accept electrons from the 3σg bonding orbital of N2 for storage by combining with POMs to replace bidentate linkers. POMs act as electron sponges donating electrons to MOFs, while the holes directional flow to POMs. The hole-rich POMs with strong oxidation capacity are easily involved in oxidizing adsorbed N2 . Taking UiO-66 (C48 H28 O32 Zr6 ) and Mo72 Fe30 ([Mo72 Fe30 O252 (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]·150H2 O) as an example, Mo72 Fe30 @UiO-66 shows twofold enhanced adsorption of N2 (250.5 cm3  g-1 ) than UiO-66 (122.9 cm3 g-1 ) at P/P0  = 1. And, the HNO3 yield of Mo72 Fe30 @UiO-66 is 702.4 µg g-1  h-1 , ≈7 times and 24 times higher than UiO-66 and Mo72 Fe30 . This work provides reliable value for the storage and relaying artificial N2 fixation.

3.
ACS Appl Mater Interfaces ; 15(22): 26852-26862, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225429

RESUMO

Hydrazine oxidation-assisted water electrolysis provides a promising way for the energy-efficient electrochemical hydrogen (H2) and synchronous decomposition of hydrazine-rich wastewater, but the development of highly active catalysts still remains a great challenge. Here, we demonstrate the robust and highly active Ru nanoparticles supported on the hollow N-doped carbon microtube (denoted as Ru NPs/H-NCMT) composite structure as HER and HzOR bifunctional electrocatalysts. Thanks to such unique hierarchical architectures, the as-synthesized Ru NPs/H-NCMTs exhibit prominent electrocatalytic activity in the alkaline condition, which needs a low overpotential of 29 mV at 10 mA cm-2 for HER and an ultrasmall working potential of -0.06 V (vs RHE) to attain the same current density for HzOR. In addition, assembling a two-electrode hybrid electrolyzer using as-prepared Ru NPs/H-NCMT catalysts shows a small cell voltage of mere 0.108 V at 100 mA cm-2, as well as the remarkable long-term stability. Density functional theory calculations further reveal that the Ru NPs serve as the active sites for both the HER and HzOR in the nanocomposite, which facilitates the adsorption of H atoms and hydrazine dehydrogenation kinetics, thus enhancing the performances of HER and HzOR. This work paves a novel avenue to develop efficient and stable electrocatalysts toward HER and HzOR that promises energy-saving hybrid water electrolysis electrochemical H2 production.

4.
Adv Mater ; 35(25): e2300935, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36964932

RESUMO

As promising hydrogen energy carrier, formic acid (HCOOH) plays an indispensable role in building a complete industry chain of a hydrogen economy. Currently, the biomass upgrading assisted water electrolysis has emerged as an attractive alternative for co-producing green HCOOH and H2 in a cost-effective manner, yet simultaneously affording high current density and Faradaic efficiency (FE) still remains a big challenge. Here, the ternary NiVRu-layered double hydroxides (LDHs) nanosheet arrays for selective glycerol oxidation and hydrogen evolution catalysis are reported, which yield an industry-level 1 A cm-2 at voltage of 1.933 V, meanwhile showing considerable HCOOH and H2 productivities of 12.5 and 17.9 mmol cm-2  h-1 , with FEs of almost 80% and 96%, respectively. Experimental and theoretical results reveal that the introduced Ru atoms can tune the local electronic structure of Ni-based LDHs, which not only optimizes hydrogen adsorption kinetics for HER, but also reduces the reaction energy barriers for both the conversion of NiII into GOR-active NiIII and carboncarbon (CC) bond cleavage. In short, this work highlights the potential of large-scale H2 and HCOOH productions from integrated electrocatalytic system and provides new insights for designing advanced electrocatalyst for low-cost and sustainable energy conversion.

5.
Adv Mater ; 35(24): e2206351, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36609998

RESUMO

Water electrolysis has been expected to assimilate the renewable yet intermediate energy-derived electricity for green H2 production. However, current benchmark anodic catalysts of Ir/Ru-based compounds suffer severely from poor dissolution resistance. Herein, an effective modification strategy is proposed by arming a sub-nanometer RuO2 skin with abundant oxygen vacancies to the interconnected Ru clusters/carbon hybrid microsheet (denoted as Ru@V-RuO2 /C HMS), which can not only inherit the high hydrogen evolution reaction (HER) activity of the Ru, but more importantly, activate the superior activity toward the oxygen evolution reaction (OER) in both acid and alkaline conditions. Outstandingly, it can achieve an ultralow overpotential of 176/201 mV for OER and 46/6 mV for the HER to reach 10 mA cm-2 in acidic and alkaline solution, respectively. Inspiringly, the overall water splitting can be driven with an ultrasmall cell voltage of 1.467/1.437 V for 10 mA cm-2 in 0.5 m H2 SO4 /1.0 m KOH, respectively. Density functional theory calculations reveal that armoring the oxygen-vacancy-enriched RuO2 exoskeleton can cooperatively alter the interfacial electronic structure and make the adsorption behavior of hydrogen and oxygen intermediates much close to the ideal level, thus simultaneously speeding up the hydrogen evolution kinetics and decreasing the energy barrier of oxygen release.

6.
Small ; 19(17): e2207425, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703521

RESUMO

Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2 ) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9 S8 /Ni3 S2 hybrid nanosheet arrays on nickel foam (N-Co9 S8 /Ni3 S2 /NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm-2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm-2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9 S8 /Ni3 S2 /NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm-2 , which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt-nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.

7.
Small ; 18(20): e2200242, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434924

RESUMO

Hydrazine-assisted hybrid water electrolysis is an energy-saving approach to produce high-purity hydrogen, whereas the development of pH-universal bifunctional catalysts encounters a grand challenge. Herein, a phase-selective synthesis of ruthenium phosphide compounds hybrid with carbon forming pancake-like particles (denoted as Rux P/C-PAN, x = 1 or 2) is presented. The obtained RuP/C-PAN exhibits the highest catalytic activity among the control samples, delivering ultralow cell voltages of 0.03, 0.27, and 0.65 V to drive 10 mA cm-2 using hybrid water electrolysis corresponding to pH values of 14, 7, and 0, respectively. Theoretical calculation deciphers that the RuP phase displays optimized free energy for hydrogen adsorption and reduced energy barrier for hydrazine dehydrogenation. This work may not only open up a new avenue in exploring universally compatible catalyst to transcend the limitation on the pH value of electrolytes, but also push forward the development of an energy-saving hydrogen generation technique based on emerging hybrid water electrolysis.


Assuntos
Rutênio , Água , Eletrólise , Hidrazinas , Hidrogênio , Concentração de Íons de Hidrogênio
8.
Angew Chem Int Ed Engl ; 61(2): e202113082, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669234

RESUMO

Clean hydrogen evolution through electrochemical water splitting underpins various innovative approaches to the pursuit of sustainable energy conversion technologies, but it is blocked by the sluggish anodic oxygen evolution reaction (OER). The hydrazine oxidation reaction (HzOR) has been considered as one of the most promising substitute for OER to improve the efficiency of hydrogen evolution reaction (HER). Herein, we construct novel dual nanoislands on Ni/C hybrid nanosheet array: one kind of island represents the part of bare Ni particle surface, while the other stands for the part of core-shell Ni@C structure (denoted as Ni-C HNSA), in which exposed Ni atoms and Ni-decorated carbon shell perform as active sites for HzOR and HER respectively. As a result, when the current density reaches 10 mA cm-2 , the working potentials are merely -37 mV for HER and -20 mV for HzOR. A two-electrode electrolyzer exhibits superb activity that only requires an ultrasmall cell voltage of 0.14 V to achieve 50 mA cm-2 .

9.
Small ; 17(19): e2008148, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33768679

RESUMO

The low thermodynamic potential (-0.33 V) and safe by-product of N2 /H2 O, make utilizing hydrazine oxidation reaction (HzOR) to replace thermodynamically-unfavorable and kinetically-sluggish oxygen evolution reaction a promising tactic for energy-efficient hydrogen production. However, the complexity of bifunctionality increases difficulties for effective material design, thus hindering the large-scale hydrogen generation. Herein, we present the rationally designed synthesis of superhydrophilic Ni-based multicomponent arrays (Ni NCNAs) composed of 1D nanorod-confined-nanoflakes (2D), which only needs -26 mV of working potential and 47 mV of overpotential to reach 10 mA cm-2 for HzOR and HER, respectively. Impressively, this Ni NCNA electrode exhibits the top-level bifunctional activity for overall hydrazine splitting (OHzS) with an ultralow voltage of 23 mV at 10 mA cm-2 and a record-high current density of 892 mA cm-2 at just 0.485 V, also achieves the high-speed hydrogen yield driven by a waste AAA battery for OHzS.

10.
ACS Appl Mater Interfaces ; 13(3): 3881-3890, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33464037

RESUMO

Designing highly active transition-metal-based electrocatalysts for energy-saving electrochemical hydrogen evolution coupled with hydrazine oxidation possesses more economic prospects. However, the lack of bifunctional electrocatalysts and the absence of intrinsic structure-property relationship research consisting of adsorption configurations and dehydrogenation behavior of N2H4 molecules still hinder the development. Now, a V-doped Ni3N nanosheet self-supported on Ni foam (V-Ni3N NS) is reported, which presents excellent bifunctional electrocatalytic performance toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER). The resultant V-Ni3N NS achieves an ultralow working potential of 2 mV and a small overpotential of 70 mV at 10 mA cm-2 in alkaline solution for HzOR and HER, respectively. Density functional theory calculations reveal that the vanadium substitution could effectively modulate the electronic structure of Ni3N, therefore facilitating the adsorption/desorption behavior of H* for HER, as well as boosting the dehydrogenation kinetics for HzOR.

11.
Angew Chem Int Ed Engl ; 60(11): 5984-5993, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33306263

RESUMO

Electrochemical water splitting for H2 production is limited by the sluggish anode oxygen evolution reaction (OER), thus using hydrazine oxidation reaction (HzOR) to replace OER has received great attention. Here we report the hierarchical porous nanosheet arrays with abundant Ni3 N-Co3 N heterointerfaces on Ni foam with superior hydrogen evolution reaction (HER) and HzOR activity, realizing working potentials of -43 and -88 mV for 10 mA cm-2 , respectively, and achieving an industry-level 1000 mA cm-2 at 200 mV for HzOR. The two-electrode overall hydrazine splitting (OHzS) electrolyzer requires the cell voltages of 0.071 and 0.76 V for 10 and 400 mA cm-2 , respectively. The H2 production powered by a direct hydrazine fuel cell (DHzFC) and a commercial solar cell are investigated to inspire future practical applications. DFT calculations decipher that heterointerfaces simultaneously optimize the hydrogen adsorption free energy (ΔGH* ) and promote the hydrazine dehydrogenation kinetics. This work provides a rationale for advanced bifunctional electrocatalysts, and propels the practical energy-saving H2 generation techniques.

12.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33115737

RESUMO

Replacing the sluggish anode reaction in water electrolysis with thermodynamically favorable hydrazine oxidation could achieve energy-efficient H2 production, while the shortage of bifunctional catalysts limits its scale development. Here, we presented the scalable one-pot synthesis of partially exposed RuP2 nanoparticle-decorated carbon porous microsheets, which can act as the superior bifunctional catalyst outperforming Pt/C for both hydrazine oxidation reaction and hydrogen evolution reaction, where an ultralow working potential of -70 mV and an ultrasmall overpotential of 24 mV for 10 mA cm-2 can be achieved. The two-electrode electrolyzer can reach 10 mA cm-2 with a record-low cell voltage of 23 mV and an ultrahigh current density of 522 mA cm-2 at 1.0 V. The DFT calculations unravel the notability of partial exposure in the hybrid structure, as the exposed Ru atoms are the active sites for hydrazine dehydrogenation, while the C atoms exhibit a more thermoneutral value for H* adsorption.

13.
Nat Commun ; 11(1): 1853, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296070

RESUMO

Replacing sluggish oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) to produce hydrogen has been considered as a more energy-efficient strategy than water splitting. However, the relatively high cell voltage in two-electrode system and the required external electric power hinder its scalable applications, especially in mobile devices. Herein, we report a bifunctional P, W co-doped Co3N nanowire array electrode with remarkable catalytic activity towards both HzOR (-55 mV at 10 mA cm-2) and hydrogen evolution reaction (HER, -41 mV at 10 mA cm-2). Inspiringly, a record low cell voltage of 28 mV is required to achieve 10 mA cm-2 in two-electrode system. DFT calculations decipher that the doping optimized H* adsorption/desorption and dehydrogenation kinetics could be the underlying mechanism. Importantly, a self-powered H2 production system by integrating a direct hydrazine fuel cell with a hydrazine splitting electrolyzer can achieve a decent rate of 1.25 mmol h-1 at room temperature.

14.
Adv Mater ; 31(23): e1901139, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972836

RESUMO

Metal-organic frameworks (MOFs) have attracted tremendous interest due to their promising applications including electrocatalysis originating from their unique structural features. However, it remains a challenge to directly use MOFs for oxygen electrocatalysis because it is quite difficult to manipulate their dimension, composition, and morphology of the MOFs with abundant active sites. Here, a facile ambient temperature synthesis of unique NiCoFe-based trimetallic MOF nanostructures with foam-like architecture is reported, which exhibit extraordinary oxygen evolution reaction (OER) activity as directly used catalyst in alkaline condition. Specifically, the (Ni2 Co1 )0.925 Fe0.075 -MOF-NF delivers a minimum overpotential of 257 mV to reach the current density of 10 mA cm-2 with a small Tafel slope of 41.3 mV dec-1 and exhibits high durability after long-term testing. More importantly, the deciphering of the possible origination of the high activity is performed through the characterization of the intermediates during the OER process, where the electrochemically transformed metal hydroxides and oxyhydroxides are confirmed as the active species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA