Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 181: 12-20, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065184

RESUMO

Type 2 diabetes is a major factor contributing to cognitive decline and Alzheimer's disease (AD). Treadmill running is considered to be a critical approach for mice and rats to lower blood sugar and improve learning and memory capacity. The growth factor receptor-bound protein 10 (Grb10) has been proposed to inhibit insulin signaling and defective brain insulin signaling resulted in the cognitive deficits in patients with AD. However, the positive roles of treadmill training on diabetic- related impaired cognitive function and their molecular mechanisms remain unclear. Here, to investigate whether there was neuroprotective effects of treadmill training on impaired cognitive function caused by diabetes, the rats were injected intraperitoneally with streptozotocin at a dose of 30 mg/kg to establish diabetic model (DM). We found that higher Grb10, BACE1 and PHF10 protein levels in the hippocampus of DM rats, lower phosphorylation IGF-1Rß and IRS-1(ser307). However, 8 weeks treadmill training effectively reduced abnormal Grb10, enhanced postsynaptic density protein PSD-93, PSD-95, SYN expressions of hippocampus, restored PI3K/Akt/ERK and mTOR/AMPK signaling, thus alleviated spatial learning and memory deficit, compared with DM group. Additionally, treadmill training also increased GLUT4 transportation. Overall, our findings suggest that treadmill intervention improved cognitive impairments caused by diabetes disease partly through modulating Grb10/ PI3K/Akt/ERK as well as mTOR/AMPK signaling.


Assuntos
Disfunção Cognitiva/terapia , Complicações do Diabetes/terapia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Terapia por Exercício , Proteína Adaptadora GRB10/metabolismo , Transportador de Glucose Tipo 4/efeitos dos fármacos , Condicionamento Físico Animal , Corrida , Animais , Antibióticos Antineoplásicos/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Complicações do Diabetes/induzido quimicamente , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Corrida/fisiologia , Estreptozocina/administração & dosagem
2.
BMC Mol Biol ; 20(1): 3, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646850

RESUMO

BACKGROUND: Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain's response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. RESULTS: We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets. CONCLUSIONS: This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise.


Assuntos
Encéfalo/metabolismo , MicroRNAs/metabolismo , Condicionamento Físico Animal , Natação , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , MicroRNAs/genética , Ratos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...