Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35565048

RESUMO

Complex and high levels of various pollutants in high-strength wastewaters hinder efficient and stable biological nutrient removal. In this study, the changes in pollutant removal performance and microbial community structure in a laboratory-scale anaerobic/aerobic sequencing batch reactor (SBR) treating simulated pre-fermented high-strength wastewater were investigated under different influent loading conditions. The results showed that when the influent chemical oxygen demand (COD), total nitrogen (TN), and orthophosphate (PO43--P) concentrations in the SBR increased to 983, 56, and 20 mg/L, respectively, the COD removal efficiency was maintained above 85%, the TN removal efficiency was 64.5%, and the PO43--P removal efficiency increased from 78.3% to 97.5%. Partial nitrification with simultaneous accumulation of ammonia (NH4+-N) and nitrite (NO2--N) was observed, which may be related to the effect of high influent load on ammonia- and nitrite-oxidising bacteria. The biological phosphorus removal activity was higher when propionate was used as the carbon source instead of acetate. The relative abundance of glycogen accumulating organisms (GAOs) increased significantly with the increase in organic load, while Tetrasphaera was the consistently dominant polyphosphate accumulating organism (PAO) in the reactor. Under high organic loading conditions, there was no significant PAO-GAO competition in the reactor, thus the phosphorus removal performance was not affected.


Assuntos
Nitrificação , Águas Residuárias , Amônia , Reatores Biológicos , Desnitrificação , Nitritos , Nitrogênio , Fósforo , Polifosfatos , Esgotos , Eliminação de Resíduos Líquidos/métodos
2.
Chemosphere ; 298: 134314, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292274

RESUMO

Bioretention has been considered as an effective management practice for urban stormwater in the removal of pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the accumulation of high-molecular-weight (HMW) PAHs in bioretention systems and their potential impact on the pollutants removal performance and microbial ecology are still not fully understood. In this study, comparisons of treatment effectiveness, enzyme activity and microbial community in bioretention systems with different types of media amendments were carried out at different spiking levels of pyrene (PYR). The results showed that the removal efficiencies of chemical oxygen demand (COD) and total nitrogen in the bioretention systems were negatively impacted by the PYR levels. The relative activities of soil dehydrogenase and urease were increasingly inhibited by the elevated PYR level, indicating the declining microbial activity regarding organic matter decomposition. The spiking of PYR negatively affected microbial diversity, and distinct time- and influent-dependent changes in microbial communities were observed. The relative abundance of PAH-degrading microorganisms increased in PYR-spiked systems, while the abundance of nitrifiers decreased. The addition of media amendments was beneficial for the enrichment of microorganisms that are more resistant to PYR-related stress, therefore elevating the COD concentration removal rate by ∼50%. This study gives new insight into the multifaceted impacts of HMW PAH accumulation on microbial fingerprinting and enzyme activities, which may provide guidance on better stormwater management practices via bioretention in terms of improved system longevity and performance.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Análise da Demanda Biológica de Oxigênio , Nitrogênio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA