Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Food Sci Nutr ; 12(5): 3759-3773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726425

RESUMO

Alcoholic liver disease (ALD) is characterized by high morbidity and mortality, and mainly results from prolonged and excessive alcohol use. Amomum villosum Lour. (A. villosum), a well-known traditional Chinese medicine (TCM), has hepatoprotective properties. However, its ability to combat alcohol-induced liver injury has not been fully explored. The objective of this study was to investigate the hepatoprotective effects of A. villosum in a rat model of alcohol-induced liver disease, thereby establishing a scientific foundation for the potential preventive use of A. villosum in ALD. We established a Chinese liquor (Baijiu)-induced liver injury model in rats. Hematoxylin and eosin (HE) staining, in combination with biochemical tests, was used to evaluate the protective effects of A. villosum on the liver. The integration of network medicine analysis with experimental validation was used to explore the hepatoprotective effects and potential mechanisms of A. villosum in rats. Our findings showed that A. villosum ameliorated alcohol-induced changes in body weight, liver index, hepatic steatosis, inflammation, blood lipid metabolism, and liver function in rats. Network proximity analysis was employed to identify 18 potentially active ingredients of A. villosum for ALD treatment. These potentially active ingredients in the blood were further identified using mass spectrometry (MS). Our results showed that A. villosum plays a hepatoprotective role by modulating the protein levels of estrogen receptor 1 (ESR1), anti-nuclear receptor subfamily 3 group C member 1 (NR3C1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, the results of the current study suggested that A. villosum potentially exerts hepatoprotective effects on ALD in rats, possibly through regulating the protein levels of ESR1, NR3C1, IL-6, and TNF-α.

2.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792176

RESUMO

Utilizing online gradient pressure liquid extraction (OGPLE) coupled with a high-performance liquid chromatography antioxidant analysis system, we examined the antioxidative active components present in both the aerial parts and roots of dandelion. By optimizing the chromatographic conditions, we identified the ferric reducing-antioxidant power system as the most suitable for online antioxidant reactions in dandelion. Compared to offline ultrasonic extraction, the OGPLE method demonstrated superior efficiency in extracting chemical components with varying polarities from the samples. Liquid chromatography-mass spectrometry revealed twelve compounds within the dandelion samples, with nine demonstrating considerable antioxidant efficacy. Of these, the aerial parts and roots of dandelion contained nine and four antioxidant constituents, respectively. Additionally, molecular docking studies were carried out to investigate the interaction between these nine antioxidants and four proteins associated with oxidative stress (glutathione peroxidase, inducible nitric oxide synthase, superoxide dismutase, and xanthine oxidase). The nine antioxidant compounds displayed notable binding affinities below -5.0 kcal/mol with the selected proteins, suggesting potential receptor-ligand interactions. These findings contribute to enhancing our understanding of dandelion and provide a comprehensive methodology for screening the natural antioxidant components from herbs.


Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Extratos Vegetais , Taraxacum , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Taraxacum/química , Extratos Vegetais/química , Raízes de Plantas/química , Componentes Aéreos da Planta/química
3.
Anal Methods ; 16(16): 2513-2521, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38587209

RESUMO

Sweet tea is a functional herbal tea with anti-inflammatory, anti-diabetic, and other effects, in which phloridzin and trilobatin are two functional compounds. However, the current methods for their quantification are time-consuming, costly, and environmentally unfriendly. In this paper, we propose a rapid method that integrates online pressurized liquid extraction and high-performance liquid chromatography featuring a superficially porous column for fast separation. Moreover, we employ an equal absorption wavelength method to eliminate using multiple standard solutions and relative calibration factors. Our verification process corroborated the technique's selectivity, accuracy, precision, linearity, and detection limitations. Separately, our methodology demonstrated excellent analytical efficiency, cost-effectiveness, and environmental friendliness. Practical application using six distinct batches of sweet tea samples yielded results in congruence with the external standard method. The analytical rate of this technique is up to over 18 times faster than traditional methods, and organic solvent consumption has been reduced to less than 1.5 mL. Therefore, this method provides a valuable way to achieve quality control and green analysis of sweet tea and other herbal teas.


Assuntos
Florizina , Cromatografia Líquida de Alta Pressão/métodos , Florizina/análise , Florizina/química , Chás de Ervas/análise , Taninos Hidrolisáveis/análise , Extração Líquido-Líquido/métodos , Reprodutibilidade dos Testes
4.
Chin Med ; 19(1): 39, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431607

RESUMO

BACKGROUND: Drunkenness and alcoholic liver disease (ALD) are critical public health issues associated with significant morbidity and mortality due to chronic overconsumption of alcohol. Traditional remedies, such as bear bile powder, have been historically acclaimed for their hepatoprotective properties. This study assessed the efficacy of a biotransformed bear bile powder known as golden bile powder (GBP) in alleviating alcohol-induced drunkenness and ALD. METHODS: A murine model was engineered to simulate alcohol drunkenness and acute hepatic injury through the administration of a 50% ethanol solution. Intervention with GBP and its effects on alcohol-related symptoms were scrutinized, by employing an integrative approach that encompasses serum metabolomics, network medicine, and gut microbiota profiling to elucidate the protective mechanisms of GBP. RESULTS: GBP administration significantly delayed the onset of drunkenness and decreased the duration of ethanol-induced inebriation in mice. Enhanced liver cell recovery was indicated by increased hepatic aldehyde dehydrogenase levels and superoxide dismutase activity, along with significant decreases in the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride, and total cholesterol levels (P < 0.05). These biochemical alterations suggest diminished hepatic damage and enhanced lipid homeostasis. Microbiota analysis via 16S rDNA sequencing revealed significant changes in gut microbial diversity and composition following alcohol exposure, and these changes were effectively reversed by GBP treatment. Metabolomic analyses demonstrated that GBP normalized the alcohol-induced perturbations in phospholipids, fatty acids, and bile acids. Correlation assessments linked distinct microbial genera to serum bile acid profiles, indicating that the protective efficacy of GBP may be attributable to modulatory effects on metabolism and the gut microbiota composition. Network medicine insights suggest the prominence of two active agents in GBP as critical for addressing drunkenness and ALD. CONCLUSION: GBP is a potent intervention for alcohol-induced pathology and offers hepatoprotective benefits, at least in part, through the modulation of the gut microbiota and related metabolic cascades.

5.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474527

RESUMO

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Assuntos
Arsênio , Clorofilídeos , Porfirinas , Humanos , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Espectrometria de Fluorescência , Corantes Fluorescentes/química
6.
J Sep Sci ; 47(1): e2300616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095533

RESUMO

To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Antioxidantes/análise , Medicamentos de Ervas Chinesas/análise , Artemisia/química , Ácido Clorogênico/análise , Calibragem , Folhas de Planta/química
7.
J Pharm Biomed Anal ; 235: 115603, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37542829

RESUMO

Cordyceps sinensis is a precious medicinal food which has been successfully cultivated indoors. It remains to be investigated for a simultaneous comparison on aqueous components of natural and cultivated samples. Herein, an approach of quantitative nuclear magnetic resonance (qNMR) analysis combined with global spectral deconvolution (GSD) was established for simultaneous quantification of 26 aqueous components in C. sinensis. Processed by GSD, the distorted baselines of 1H NMR spectra were greatly improved, and overlapped signals were also well separated so as to achieve accurate identification and quantitation of components in C. sinensis. Method validation by UHPLC-QTOF-MS and TOF-SIMS analysis revealed that qNMR combined with GSD is a reliable approach for simultaneous quantification of multiple components including characteristic markers of glutamine, GABA and trehalose in authentic and fake C. sinensis. The well-established qNMR approach can be used for quality assessment of natural and cultivated C. sinensis as well as differentiation from fake ones.


Assuntos
Cordyceps , Cordyceps/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Água
8.
Se Pu ; 41(8): 690-697, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37534556

RESUMO

Fraxini Cortex is a traditional Chinese herbal medicine that has been used for thousands of years to treat dampness-heat diarrhea, dysentery, red or white vaginal discharge, painful swelling or redness of the eyes, and nebula. It contains various chemical components, including coumarins, iridoids, phenolic acids, and flavonoids. Coumarins are important active ingredients in Fraxini Cortex and have antibacterial, anti-inflammatory, antioxidant, antitumor, and antiviral activities. Aesculin and aesculetin are two major coumarin components of Fraxini Cortex that are widely used in its quality evaluation. Previous HPLC methods for determination of aesculin and aesculetin present several limitations, such as long analysis times and high solvent and reference compound consumption. In this study, a rapid, eco-friendly and cost saving HPLC method for the determination of aesculin and aesculetin in Fraxini Cortex was established by using the core-shell column and equal absorption wavelength (EAW). Different factors influencing the extraction process, such as the extraction solvent, temperature, and time, were assessed to obtain the optimal extraction conditions. The results showed that Fraxini Cortex samples could be well extracted by ultrasonic extraction for 5 min with a 25% ethanol aqueous solution. A core-shell column was used, and different mobile phases and flow rates were investigated to obtain the best rapid-HPLC separation conditions. The optimized HPLC conditions were as follows: a Poroshell 120 EC-C18 column (50 mm×4.6 mm, 2.7 µm), acetonitrile-0.1% formic acid aqueous solution (6∶94, v/v) as the eluent, a flow rate of 1.5 mL/min, and a column temperature of 25 ℃. The EAW of aesculin and aesculetin was a key factor in their determination using a single reference compound. EAW selection was performed in two steps. First, the UV spectra of two equimolar concentrations of the reference compounds (aesculin and aesculetin) were compared to determine the EAW of the two analytes. The EAW results were then verified by the HPLC analysis of the reference compound solutions. The final EAW of aesculin and aesculetin was 341 nm. The determination of aesculin and aesculetin using only one reference compound (i. e., aesculin) was achieved by HPLC-UV at this EAW. The newly developed HPLC method revealed a good linear relationship between the two target analytes (r=1.0000). The limits of detection (LODs) and limits of quantification (LOQs) were 1.5 µmol/L and 3.0 µmol/L, respectively, and the average recoveries of aesculin and aesculetin were 99.0% and 97.5%. The stabilities of the sample solutions were examined, and the two analytes demonstrated good stability for 24 h. The contents of the target analytes in 10 batches of Fraxini Cortex were determined using the proposed EAW method and the classic external standard method (ESM), and comparable concentrations were obtained. The contents of aesculin and aesculetin in the 10 batches of Fraxini Cortex were 0.26%-2.80% and 0.11%-1.47%, respectively. A t-test was conducted to compare the results of the proposed EAW technique with those obtained via the method reported in the Chinese Pharmacopoeia, and no significant difference between the two assay methods was noted (P>0.05). Comparison of the newly established EAW method with those reported in the literature revealed that our method required only 10 min to complete and used as little as 0.5 mL of the solvent and only one standard. Therefore, the developed EAW method is a rapid, simple, eco-friendly, and cost-effective analytical method that is suitable for the determination of aesculin and aesculetin in Fraxini Cortex and its related products. The proposed technique is an improved method for determining aesculin and aesculetin and contributes to the enhancement of the quality evaluation of Fraxini Cortex.


Assuntos
Medicamentos de Ervas Chinesas , Esculina , Feminino , Humanos , Esculina/análise , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Cumarínicos , Solventes
9.
J Nat Med ; 77(4): 986-991, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37515674

RESUMO

Chinese cordyceps, also known as Dong-Chong-Xia-Cao, is widely recognized as a famous precious tonic herb, and used as traditional Chinese medicine for centuries. It is mainly used for regulating the immune system and improving functions of the lung and kidney, with anti-tumor, anti-inflammatory, and anti-diabetic activities. Due to its rarity and preciousness, a few chemical components are isolated and identified. Moreover, most of them are common chemical components and widely distributed in other natural resources, such as nucleosides, sterols, fatty acids, sugar alcohols, and peptides. Therefore, a large number of active substances of Chinese cordyceps is still unclear. During our search for chemical constituents of Chinese cordyceps, a new thiazole alkaloid, cordythiazole A (1), was isolated and identified. Its structure was elucidated by comprehensive spectroscopic analysis and single-crystal X-ray diffraction analysis. This is the first report of the presence of thiazole alkaloid in Chinese cordyceps, which adds a new class of metabolite of Chinese cordyceps. Furthermore, a putative biosynthesis pathway of cordythiazole A was proposed based on possible biogenic precursor, genes, and literatures. In addition, it showed α-glucosidase inhibitory activity with potency close to that of acarbose. The discovery of cordythiazole A with α-glucosidase inhibitory activity adds a new class of potential anti-diabetes ingredient in Chinese cordyceps.


Assuntos
Alcaloides , Antineoplásicos , Cordyceps , Cordyceps/química , alfa-Glucosidases , Alcaloides/farmacologia
10.
Int J Anal Chem ; 2023: 5546053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416897

RESUMO

A rapid HPLC-UV method for the determination of three organic acids (neochlorogenic acid, chlorogenic acid, and cryptochlorogenic acid) in Polygoni Vivipari Rhizoma (PVR) by one marker was developed. The sample was prepared by effervescence-assisted matrix solid-phase dispersion (EA-MSPD). The separation of compounds was performed on a Poroshell column. The equal absorption wavelength was set as follows: 292 nm (0∼7 min) and 324 nm (7∼10 min). The analytical time including sample extraction and HPLC separation time was 12 min. The analytical method validation such as accuracy (recoveries 99.85%-106.29% and RSD < 2.9%), precision (RSD < 1.3%), reproducibility (RSD < 1.7%), and stability tests (RSD < 0.7% in 24 h) proved that the established HPLC method was suitable for determination of three organic acids in PVR. The contents of three analytes obtained by the external standard method with three markers and the equal absorption wavelength method with one marker were similar (RSD ≤ 2.0%). The developed method, which is rapid and reference compound saving, is an improved quality evaluation method of PVR.

11.
J Korean Stat Soc ; : 1-27, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37361424

RESUMO

We propose a new strategy for analyzing the evolution of random phenomena over time and space simultaneously based on the high-order multivariate Markov chains. We develop a novel Markov model of order r for m chains consisting of s possible states to gather parsimony with realism. It can capture negative and positive associations among the chains with only a reduced number of parameters, rm2s2+2, remarkably lower than msrm+1 required for the full parameterized model. Our model privileges are enhanced by a Monte Carlo simulation experiment, besides application to analyze the spatial-temporal dynamics for the risk level of a recently global pandemic (COVID-19) outbreak in world health organization (WHO) regions for predicting the risk state of epidemiological prevalence and monitoring infection control.

12.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241909

RESUMO

Polygoni Cuspidati Rhizoma et Radix (PCR), the rhizome and root of Polygonum cuspidatum Sieb. et Zucc., has been used as an herbal medicine for a long time. In this study, the ultrafiltration combined with high performance liquid chromatography (UF-HPLC) method was developed to screen tyrosinase (TYR), α-glucosidase (α-GLU), and xanthine oxidase (XOD) inhibitors from PCR. Firstly, the inhibitory activity of 50% methanol PCR extract on TYR, α-GLU, XOD, and acetylcholinesterase (ACHE) was tested. The extract showed a good inhibition on the enzymes, except for ACHE. Therefore, UF-HPLC experiments were carried out to screen TYR, α-GLU, and XOD inhibitors from PCR extract. Seven potential bioactive components were discovered, including methylgallate (1), 1,6-di-O-galloyl-D-glucose (2), polydatin-4'-O-D-glucoside (3), resveratrol-4'-O-D-glucoside (4), polydatin (5), malonyl glucoside resveratrol (6), and resveratrol-5-O-D-glucoside (7). Most of them were found as enzyme inhibitors from PCR for the first time, except polydatin (5), which had been reported as an α-GLUI in PCR in the literature. Finally, molecular docking analysis was applied to validate the interactions of these seven potential active components with the enzymes. Compounds 1-7 were proven as TYR inhibitors, compounds 2, 4-7 were identified as XOD inhibitors, and compounds 4-6 were confirmed as α-GLU inhibitors. In short, the current study provides a good reference for the screening of enzyme inhibitors through UF-HPLC, and provides scientific data for future studies of PCR.


Assuntos
Medicamentos de Ervas Chinesas , Rizoma , Rizoma/química , Monofenol Mono-Oxigenase , Medicamentos de Ervas Chinesas/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/análise , Cromatografia Líquida de Alta Pressão/métodos , Xantina Oxidase , Resveratrol/análise , Acetilcolinesterase , Simulação de Acoplamento Molecular , Ultrafiltração , Glucosídeos/análise
13.
RSC Adv ; 13(14): 9585-9594, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968051

RESUMO

Polygonum viviparum L. (PV) is a widely used resource plant with high medicinal, feeding and ecological values. Our studies show that PV has strong antioxidant activity. However, up to date, the antioxidant activity and components in other parts were not fully elucidated. In the present study, a new online pre-column ferric ion reducing antioxidant power (FRAP)-based antioxidant reaction coupled with high performance liquid chromatography-diode array detector-quadrupole-time-of-flight mass spectrometry (HPLC-DAD-TOF/MS) was developed for rapid and high-throughput screening of natural antioxidants from three different parts of PV including stems and leaves, fruits and rhizomes. In this procedure, it was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be greatly diminished or vanish after incubating with the FRAP. The online incubation conditions including mixed ratios of sample and FRAP solution and reaction times were firstly optimized with six standards. Then, the repeatability of the screening system was evaluated by analysis of the samples of stems and leaves of PV. As a result, a total of 21 compounds mainly including flavonoids and phenolic acids were screened from the three parts of PV. In conclusion, the present study provided a simple and effective strategy to rapidly screen antioxidants in natural products.

14.
Foods ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900632

RESUMO

Morchella esculenta is an edible mushroom with special flavor and high nutritional value for humans, primarily owing to its polysaccharide constituents. M. esculenta polysaccharides (MEPs) possess remarkable pharmaceutical properties, including antioxidant, anti-inflammatory, immunomodulatory, and anti-atherogenic activities. The aim of this study was to evaluate the in vitro and in vivo antioxidant potential of MEPs. In vitro activity was determined using free radical scavenging assays, whereas in vivo activity was evaluated through dextran sodium sulfate (DSS)-induced liver injury in mice with acute colitis. MEPs effectively scavenged 1,1-diphenyl-2-picrylhydrazyl and 2,2-azinobis-6-(3-ethylbenzothiazoline sulfonic acid) free radicals in a dose-dependent manner. Additionally, DSS-induced mice showed severe liver damage, cellular infiltration, tissue necrosis, and decreased antioxidant capacity. In contrast, intragastric administration of MEPs showed hepatoprotective effects against DSS-induced liver injury. MEPs remarkably elevated the expression levels of superoxide dismutase, glutathione peroxidase, and catalase. Additionally, it decreased malondialdehyde and myeloperoxidase levels in the liver. These results indicate that the protective effects of MEP against DSS-induced hepatic injury could rely on its ability to reduce oxidative stress, suppress inflammatory responses, and improve antioxidant enzyme activity in the liver. Therefore, MEPs could be explored as potential natural antioxidant agents in medicine or as functional foods to prevent liver injury.

15.
Int J Biol Macromol ; 229: 507-514, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36603712

RESUMO

Ophiocordyceps sinensis (syn. Cordyceps sinensis) is a valuable medicinal fungus in traditional Chinese medicine, and one or more polysaccharides are the key constituents with important medical effects. Glycogen as a functional polysaccharide is widely identified in eukaryotes including fungi. However, there is no definitive report of glycogen presence in O. sinensis. In this study, we carefully fractionated polysaccharides from cultivated caterpillar fungus O. sinensis, which were then characterized via methods for glycogen analysis. According to the results, 1.03 ± 0.43 % of polysaccharides were quantified via amyloglucosidase digestion in the whole cultivated caterpillar fungus, which had a typical spherical shape under transmission electron microscope with an average peak radius of 37.63 ± 0.57 nm via size exclusion chromatography and an average chain length of 12.47 ± 0.94 degree of polymerization via fluorophore-assisted capillary electrophoresis. Taken together, this study confirmed that the polysaccharides extracted form O. sinensis were mostly glycogen.


Assuntos
Cordyceps , Cordyceps/química , Medicina Tradicional Chinesa/métodos , Polissacarídeos/farmacologia , Glicogênio , Cromatografia em Gel
16.
Artigo em Inglês | MEDLINE | ID: mdl-36704212

RESUMO

The root of Polygonum bistorta (PB) is a traditional Chinese medicinal plant material widely used in China. It has been commonly used for the treatment of hemostasis, detumescence, diarrhea, snake bite, and acute gastroenteritis. However, the research on the antioxidant properties and bioactive compounds from PB is inadequate. In the current research, an online microextraction (OLME) coupled with a high-performance liquid chromatography coupled with the 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay (HPLC-ABTS) system for rapid analysis of antioxidants from PB was proposed. The PB sample (0.17 mg) was online extracted by mobile phase (acetonitrile and 0.2% acetic acid); a Poroshell 120 SB-Aq column was used for separation; then, an online ABTS assay system was used for screening the antioxidants. Finally, ten components were found in PB, and among them, eight components possessed antioxidant activities. Furthermore, five components (gallic acid, neochlorogenic acid, caffeic acid, chlorogenic acid, and an unknown compound) were proved as major antioxidants when compared with rutin as an antioxidant marker. The results showed that the developed OLME-HPLC-ABTS system was a simple, rapid, green, and efficient instrument for the screening of antioxidants from PB, which provides a powerful tool for the discovery of natural antioxidants in Chinese medicines.

17.
J Pharm Biomed Anal ; 222: 115085, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36194911

RESUMO

An ultra-rapid and eco-friendly method for the determination of loganic acid and gentiopicroside in Gentianae Macrophyllae Radix (GMR) was developed by vortex-assisted matrix solid-phase dispersion extraction (VAMSPD) and liquid chromatography with mass spectrometry (LC-MS). The optimized VAMSPD parameters are as follow: sample-dispersant (diatomaceous earth) ratio is 1:5, grinding for 0.5 min and whirling with 0.5 mL 15 % ethanol for 0.5 min. The LC separation is performed on a Poroshell 120 EC-C18 column (30 ×2.1 mm, 2.7 µm) and eluted by an eco-friendly mobile phase (14 % ethanol containing 0.1 % formic acid) at a flow rate of 0.5 mL min-1 in isocratic mode, and detected by mass spectrometry (MS). The developed method exhibits a good linearity for the analytes (r > 0.9990). The RSDs of precision and repeatability are less than 4.0 %, the recoveries for loganic acid and gentiopicroside are 106.5 % (RSD=3.6 %) and 95.7 % (RSD=8.0 %), respectively. The developed method was successfully applied in the analysis of loganic acid and gentiopicroside in GMR samples. The total analysis time is 2 min, including 1 min for sample extraction and 1 min for LC-MS analysis. In addition, the method only requires 0.3 mL of ethanol.


Assuntos
Extração em Fase Sólida , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Etanol
18.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364318

RESUMO

In this study, a simple colorimetric method was established to detect copper ion (Cu2+), sulfathiazole (ST), and glucose based on the acetylcholinesterase (AChE)-like activity of zeolitic imidazolate framework-8 (ZIF-8). The AChE-like activity of ZIF-8 can hydrolyze acetylthiocholine chloride (ATCh) to thiocholine (TCh), which will further react with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) to generate 2-nitro-5-thiobenzoic acid (TNB) that has a maximum absorption peak at 405 nm. The effects of different reaction conditions (buffer pH, the volume of ZIF-8, reaction temperature and time, and ATCh concentration) were investigated. Under the optimized conditions, the value of the Michaelis-Menten constant (Km) is measured to be 0.83 mM, which shows a high affinity toward the substrate (ATCh). Meanwhile, the ZIF-8 has good storage stability, which can maintain more than 80.0% of its initial activity after 30 days of storage at room temperature, and the relative standard deviation (RSD) of batch-to-batch (n = 3) is 5.1%. The linear dependences are obtained based on the AChE-like activity of ZIF-8 for the detection of Cu2+, ST, and glucose in the ranges of 0.021-1.34 and 5.38-689.66 µM, 43.10-517.24 µM, and 0.0054-1.40 mM, respectively. The limit of detections (LODs) are calculated to be 20.00 nM, 9.25 µM, and 5.24 µM, respectively. Moreover, the sample spiked recoveries of Cu2+ in lake water, ST in milk, and glucose in strawberry samples were measured, and the results are in the range of 98.4-115.4% with the RSD (n = 3) lower than 3.3%. In addition, the method shows high selectivity in the real sample analysis.


Assuntos
Acetilcolinesterase , Zeolitas , Colorimetria , Acetiltiocolina , Glucose
19.
Eur J Pharmacol ; 933: 175291, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150533

RESUMO

Diabetes mellitus (DM) is a factor with great risk in the course of non-alcoholic fatty liver disease (NAFLD) due to its high glucotoxicity and lipotoxicity. Trilobatin, a glycosylated dihydrochalcone derived from the leaves of the Chinese sweet tea Lithocarpus polystachyus Rehd, is reported to possess various pharmacological activities. Nevertheless, it is still unclear regarding if trilobatin can alleviate liver injury in diabetic mice with NAFLD and its mechanism. Our aim was to investigative the protective effects of trilobatin against DM with NAFLD and its mechanism of action. A DM mice model was established by high-fat diet (HFD) feeding with streptozocin (STZ) injections, and treated with trilobatin for 10 weeks. The biochemical results showed that trilobatin restored glucose metabolic disorder and liver function in diabetic mice. The histopathological evaluation revealed that trilobatin improved liver injury by alleviating lipid accumulation and liver fibrosis. Mechanistically, trilobatin decreased expression of NLRP3, p65 NF-κB, cleaved-Caspase-1 and N-GSDMD, as well as the release of IL-18 and IL-1ß, leading to a alleviation of inflammation and pyroptosis. Taken together, we determined for the first time found that trilobatin could prevent liver injury in diabetic mice with NAFLD by suppressing NLRP3 inflammasome activation to reduce inflammation and pyroptosis.


Assuntos
Diabetes Mellitus Experimental , Hepatopatia Gordurosa não Alcoólica , Animais , Caspase 1/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Flavonoides , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Lipídeos , Fígado , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polifenóis , Estreptozocina/farmacologia , Chá
20.
Anal Methods ; 14(36): 3583-3597, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36043471

RESUMO

Cultivated ginseng (CG), transplanted ginseng (TG) and mountain cultivated ginseng (MCG) classified by the habitat type all belong to Panax ginseng and were reported to have similar types of secondary metabolites. Nonetheless, owing to the distinctly diverse habitats in which these ginseng types grow, their pharmacological effects differ. In the present study, an emerging analytical approach involving headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was established to effectively distinguish among CG, TG and MCG. First, the volatile components were analysed and identified by using the NIST library combined with measured retention indices (Kovats', RI), and a total of 78 volatile components were finally characterized, which included terpenes, alcohols, esters, aldehydes and alkynols. Furthermore, multivariate statistical approaches, principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) were subsequently utilized to screen for compounds of significance. Under optimized HS-SPME-GC-MS conditions, 12, 16, and 16 differential markers were screened in the CG-TG, CG-MCG and TG-MCG groups, respectively. Our study suggested that HS-SPME-GC-MS analysis combined with metabolomic analytical methods and chemometric techniques can be applied as potent tools to identify chemical marker candidates to distinguish CG, TG and MCG.


Assuntos
Panax , Compostos Orgânicos Voláteis , Aldeídos/análise , Aldeídos/metabolismo , Quimiometria , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas/métodos , Panax/química , Panax/metabolismo , Microextração em Fase Sólida/métodos , Terpenos/análise , Terpenos/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...