Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(7): 1603-1610, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38273795

RESUMO

The state of water, thermal transition behaviors, molecular interactions, crystalline structure, and mechanical performance of hydrated gelatin films were studied by differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), X-ray diffraction, and universal testing instruments. The DSC results showed that with increase of the water content, two types of water, including unfreezable bound water and freezable water, appeared in turn. Below a critical water content of 30%, the glass transition temperature (Tg) of the hydrated gelatin films decreased notably with an increase in water content, which leveled off at water content higher than this threshold. This observation suggests that only the unfreezable water exhibits a plasticizing effect. In addition, the melting temperature (Tm) of hydrated gelatin films decreased continuously with an increase in water content, whereas the melting enthalpy showed a non-monotonic dependence on hydration level. Structural analysis showed that at medium hydration levels up to 13.4% water content, the unfreezable water facilitated the formation of additional triple helices, confirmed by DSC results. Spectral data revealed that the -OH groups of unfreezable water molecules interacted with the -NH groups of the protein via hydrogen bonds. Moreover, the mechanical properties of the hydrated gelatin films were sensitive to their hydration level, and the tensile strength was dominated by the helix content of the protein films. These results show the feasibility of using hydration to regulate the microstructure and properties of biopolymers.

2.
Int J Biol Macromol ; 256(Pt 1): 128421, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013085

RESUMO

A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.


Assuntos
Carbodi-Imidas , Quitosana , Curcumina , Metilaminas , Succinimidas , Quitosana/química , Curcumina/farmacologia , Escherichia coli , Staphylococcus aureus , Concentração de Íons de Hidrogênio
3.
Molecules ; 28(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446873

RESUMO

Bio-based packaging materials and efficient drug delivery systems have garnered attention in recent years. Among the soluble cellulose derivatives, carboxymethyl cellulose (CMC) stands out as a promising candidate due to its biocompatibility, biodegradability, and wide resources. However, CMC-based films have limited mechanical properties, which hinders their widespread application. This paper aims to address this issue by exploring the molecular interactions between CMC and various additives with different molecular structures, using the rheological method. The additives include O-carboxymethylated chitosan (O-CMCh), N-2-hydroxypropyl-3-trimethylammonium-O-carboxymethyl chitosan (HTCMCh), hydroxypropyltrimethyl ammonium chloride chitosan (HACC), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). By investigating the rheological properties of film-forming solutions, we aimed to elucidate the influencing mechanisms of the additives on CMC-based films at the molecular level. Various factors affecting rheological properties, such as molecular structure, additive concentration, and temperature, were examined. The results revealed that the interactions between CMC and the additives were dependent on the charge of the additives. Electrostatic interactions were observed for HACC and HTCMCh, while O-CMCh, CNC, and CNF primarily interacted through hydrogen bonds. Based on these rheological properties, several systems were selected to prepare the films, which exhibited excellent transparency, wettability, mechanical properties, biodegradability, and absence of cytotoxicity. The desirable characteristics of these selected films demonstrated the strong biocompatibility between CMC and chitosan and cellulose derivatives. This study offers insights into the preparation of CMC-based food packaging materials with specific properties.


Assuntos
Quitosana , Quitosana/química , Celulose/química , Carboximetilcelulose Sódica/química , Sódio
4.
Carbohydr Polym ; 312: 120842, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059567

RESUMO

In this study, the composite films of poly(vinyl alcohol) and citric acid cross-linked chitosan were prepared, and the effect of mass ratio on their structure and properties was investigated in detail. Chitosan was cross-linked by citric acid via an amidation reaction at an elevated temperature, which was confirmed by infrared spectra and X-ray photoelectron spectra. Chitosan is miscible with PVA due to the formation of strong hydrogen bonds between them. Among these composite films, 1:1 CS/PVA film showed excellent mechanical properties, good creep resistance, and shape recovery ability, attributing to its high crosslinking degree. In addition, this film possessed hydrophobicity, excellent self-adhesion property, and the lowest WVP, and it was successfully used as a packaging material for cherry. These observations indicate that the cooperative effects of crosslinking and hydrogen bonds control the structure and properties of chitosan/PVA composite film, which is a very potential material for food packaging and preservation.

5.
J Colloid Interface Sci ; 629(Pt B): 279-287, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155923

RESUMO

With the increasing requirement for high capacity energy storage systems, a large amount of recent work has focused on the development of zinc-iodine batteries (ZIBs) on account of high energy density, fast redox kinetics, and excellent reversibility. Nevertheless, low electron conductivity, the shuttle effect, and highly soluble iodine species (I2, I-, and I3-) have impeded their widespread application. In this study, metal organic framework-5 (MOF-5)-derived mesoporous carbon (MPC) loaded iodine (MPC/I2) cathode and the single-sided ketjen black modified cotton fiber (KB@CF) separator are designed to solve the problems mentioned above. That is, the double fixation strategy using MPC and KB@CF separators for iodine species suppresses the shuttle effect. Therefore, the ZIBs constructed with the MPC/I2 cathode and the KB@CF separator can exhibit excellent electrochemical performance. At the current density of 0.1 A g-1, a high discharge specific capacity of 137 mAh g-1 is still available after 300 cycles. Meanwhile, it exhibits a low capacity decay rate at long cycling (0.030% per cycle over 2000 cycles).

6.
Chempluschem ; 87(11): e202200249, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357010

RESUMO

Inspired by the formation of microspheres by hexachlorocyclotriphosphazene and 4, 4'-sulfonyldiphenol, polyphosphazene-functionalized microspheres were developed. Benefits from the supported supper basic phosphazene, the yield exceeded 99 % at room temperature in the manner of second-order reaction kinetics toward Knoevenagel reaction and was still maintained at 99 % after 16 runs. In the experimental temperature from 0 °C to 90 °C, the yield increased from 92 % to 99 %, reflecting that the catalyst had strong applicability under mild conditions. This behavior was conducive to energy conservation. Meanwhile, simple separation and recovery further enhanced this advantage. In addition, the catalyst was also found to be insensitive to aqueous solution or organic solvents such as toluene, THF, EtOH and CH3 CN. This property gave the Knoevenagel reaction a vast choice. All these features exhibit that this novel catalyst is an attractive and applicable alternative in organic synthesis.


Assuntos
Compostos Organofosforados , Polímeros , Microesferas , Catálise
7.
Polymers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956560

RESUMO

In this study, four polycarbazole derivatives (PCMB-Ds) with different alkyl side chains were designed and synthesized via Wittig-Horner reaction. A novel solid-phase electrochemiluminescence (ECL) system was prepared by immobilizing PCMB-D on an indium tin oxide (ITO) electrode with polyvinylidene fluoride (PVDF) in the presence of tripropylamine (TPrA). It could be found that the increase in alkyl side chain length had little effect on the ECL signal of PCMB-D, while the increase in the degree of polymerization (DP) greatly enhanced the ECL signal. Furthermore, the P-3/ITO ECL sensor based on the polyoctylcarbazole derivative (P-3) with the best ECL performance was successfully constructed and detected Fe3+ under the optimal experimental conditions. The ECL signal steadily diminished with the increased concentration of Fe3+ because of the competition and complexation between Fe3+ and P-3 under the condition of pH 7.4. This P-3/ITO platform could realize a highly sensitive and selective detection of Fe3+ with a wide detection range (from 6 × 10-8 mol/L to 1 × 10-5 mol/L) and low detection limit of 2 × 10-8 mol/L, which could allow the detection of Fe3+ in multiple scenarios, and would have a great application prospect.

8.
Colloids Surf B Biointerfaces ; 217: 112674, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785718

RESUMO

The soaking strategy with the Hofmeister effect has been proposed to fabricate gelatin- based hydrogels with excellent properties. However, the modulation mechanism of hydrogels lacks in-depth study. In this work, we studied in detail the effects of Hofmeister ions on the structural, thermal, viscoelastic and mechanical properties of gelatin hydrogels. The results showed that kosmotropic anions (Cit3-, SO42-, H2PO4- and S2O32-) enhanced hydrogen bonds and hydrophobic interactions between gelatin molecules, resulting in increases in the length and content of triple helices and thus improving the properties of gelatin hydrogels. In contrast, chaotropic anions (I- and SCN-) weakened the interactions between gelatin molecules, and thus attenuated the properties. Based on the Hofmeister effect, we successfully fabricated gelatin poly N-methylolacrylamide (PNMA) double network hydrogels with shape memory properties. The Hofmeister effect provides an excellent route for the rational design and fabrication of functional gelatin-based hydrogels.


Assuntos
Gelatina , Hidrogéis , Ânions/química , Gelatina/química , Hidrogéis/química , Ligação de Hidrogênio , Íons
9.
Adv Sci (Weinh) ; 9(27): e2201679, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35882629

RESUMO

Hydrogel electrolyte is widely used in solid energy storage devices because of its high ionic conductivity, environmental friendliness, and non-leakage property. However, hydrogel electrolyte is not resistant to freezing. Here, a high proton conductive zwitterionic hydrogel electrolyte with super conductivity of 1.51 mS cm-1 at -50 °C is fabricated by random copolymerization of acrylamide and zwitterionic monomer in the presence of 1 m H2 SO4 and ethylene glycol (EG). The antifreezing performance and low temperature conductivity are ascribed to hydrogen bonds and ionic bonds between the components and water molecules in the system and can be tuned by changing the monomer ratio and EG contents. The proton hopping migration on the ionic group of the polymer chains and Grotthuss proton transport mechanism are responsible for the high proton conductivity while Grotthuss transport is dominated at the glassy state of the polymer chains. The electrolyte-assembled supercapacitor (SC) offers high specific capacitance of 93.5 F g-1 at 25 °C and 62.0 F g-1 at -50 °C with a capacitance retention of 91.1% and 81.5% after 10 000 cycles, respectively. The SC can even work at -70 °C. The electrolyte outperforms most reported antifreezing hydrogel electrolytes and has high potential in low-temperature devices.

10.
RSC Adv ; 12(7): 3969-3978, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425441

RESUMO

In this study, we investigated the effect of sodium dodecyl sulfate (SDS) content on the structure and properties of chitosan films. It is found that the binding of SDS to chitosan was realized through the interactions between -SO4 - and -NH3 +, forming an ionically cross-linked film. Structural analysis revealed that the crystallization was greatly hindered by introducing SDS. With an increase of SDS content, the glass transition temperatures (T g) of chitosan films increased due to the formation of crosslinks. Compared to pure chitosan film, the composite films had lower content of moisture and possessed better thermal stability. In addition, the mechanical properties of the as-obtained composite films were closely related to the content of SDS, and were significantly improved in the biopolymer films with moderate SDS content. These results indicate that the microstructure as well as properties of the chitosan films can be regulated by adding SDS.

11.
Carbohydr Polym ; 278: 118975, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973789

RESUMO

The research and development of substitutes for petroleum-based plastics has become a hot topic. The N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, 10 wt%)/sodium carboxymethyl cellulose (CMC) films have showed enhanced mechanical properties, which also provide a potential substitute to petroleum-based plastics. In this paper, calcium carbonate was crystallized (cry-CaCO3) in HTCC/CMC film-forming solutions, and the effects of the cry-CaCO3 particles on HTCC/CMC film properties including microstructures, mechanical properties, thermal stability, whiteness, and wettability were characterized. An HTCC/CMC film with commercially available CaCO3 (com-CaCO3) was used as a control. The results showed that the cry-CaCO3 promoted the homogeneous distribution of the HTCC/CMC matrix and significantly improved mechanical properties, but showed little effect on the thermal stability, whiteness and wettability of the films. To reveal the affecting mechanism of cry-CaCO3 on HTCC/CMC film properties, the cry-CaCO3 particles were isolated from film-forming solutions and characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) methods. The results showed that the HTCC/CMC matrix modulated spherical CaCO3 particles, and the macromolecules were encapsulated in cry-CaCO3 particles, decreasing their adhesion to the HTCC/CMC matrix while increasing their distribution in the HTCC/CMC matrix. The strong electrostatic, hydrogen bonding and flexible interaction between CMC and cry-CaCO3 particles played a key role in improving the mechanical properties of HTCC/CMC films.


Assuntos
Carbonato de Cálcio , Carboximetilcelulose Sódica , Carbonato de Cálcio/química , Carboximetilcelulose Sódica/química , Cristalização , Tamanho da Partícula
12.
Int J Biol Macromol ; 190: 93-100, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481851

RESUMO

pH-sensitive and amphiphilic chitosan derivatives can be used as hydrophobic drug carriers, and their rheological properties play a key role in their performance. In this paper, two pH-responsive and amphiphilic chitosan derivatives, N-(2-allyl-butyl glycidyl ether)-O-carboxymethyl chitosan (HBCC) and N-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC) were synthesized, and their rheological properties were studied. The influence of parameters including concentrations of HBCC and H2ECC, the degree of substitution, solution pH, and [Ca2+] on the rheological properties were investigated. The results showed that the overlap and entanglement concentration of HBCC and H2ECC was ca. 1.7 wt% and 5 wt%, respectively. The dilute and semidilute solutions showed Newtonian behavior. Above 5 wt%, strong networks formed, and shear-thinning behavior appeared at high shear rates (>10 s-1) for entangled solutions. A high degree of substitution and pH near the isoelectric points of HBCC and H2ECC corresponded to a low viscosity and viscoelasticity. In addition, Ca2+ played a shielding effect on the -COO- groups at low concentrations (<10 mmol/L), whereas it acted as a cross-linker when [Ca2+] ≥ 20 mmol/L. The intermolecular hydrogen bonds were examined by molecular dynamics simulations. The results provide new information related to the application of HBCC and H2ECC for hydrophobic drug packaging and transportation.


Assuntos
Quitosana/análogos & derivados , Cálcio/análise , Quitosana/química , Simulação por Computador , Elasticidade , Concentração de Íons de Hidrogênio , Polímeros/química , Soluções , Viscosidade
13.
Colloids Surf B Biointerfaces ; 206: 111944, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34214840

RESUMO

The effect of various Hofmeister anions on the molecular conformation of gelatin in dilute solutions was investigated by viscosity, optical rotation and dynamic light scattering (DLS). The results showed that the intrinsic viscosity of gelatin decreased in the presence of the kosmotropic anions such as Citrate3-, SO42-, H2PO4- and MeCOO-, whereas it was increased with the addition of chaotropes such as Cl- and KSCN-. Furthermore, the intrinsic viscosity of gelatin was directly correlated to the hydration entropy of kosmotropic anions, suggesting that the decrease of the intrinsic viscosity was attributed to the strong hydration effect of kosmotropes. The strong dehydration of gelatin facilitated the folding of the polymer chains into helix bundles, validated by the results of optical rotation. On the contrary, the chaotropic anions could interact directly with polypeptide backbones, and the intrachain hydrogen bonds were destroyed. As a result, the polymer chains expanded, which was confirmed by DLS data, and the intrinsic viscosity was increased. These observations indicate that the molecular conformation of gelatin can be modulated by Hofmeister anions.


Assuntos
Gelatina , Polímeros , Ânions , Entropia , Soluções , Viscosidade
14.
Soft Matter ; 17(6): 1558-1565, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33337462

RESUMO

A simple yet effective soaking treatment has been proposed to fabricate hydrogels with desirable mechanical properties, but the strengthening mechanism of hydrogels lacks an in-depth study. Here, we investigated the influence of kosmotropic citrate anion on the structure and properties of immersed gelatin hydrogels. The obtained hydrogels possessed the properties of high strength, modulus and toughness simultaneously. The dehydration of hydrogels facilitated the interactions among gelatin molecules, resulting in the formation of helix structures. Both the content and length of the triple helices increase with an increase in citrate concentration, which in turn contributes to the strengthening of hydrogels. The excellent mechanical performances of these hydrogels may open up new applications for protein materials.

15.
Polymers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375109

RESUMO

In this study, a type of alkaline solid polyelectrolyte (ASPE) membrane was developed via the introduction of microcrystalline cellulose (MCC) and its modified product (QMCC) into the polyvinyl alcohol (PVA) matrix. In this process, green NaOH/urea-based solvent was used to achieve a good dispersion of MCC in the PVA matrix; meanwhile, the OH- groups in the NaOH/urea-based solvent provided an alkaline environment for good ion conductivity. Compared to the MCC-incorporated ASPE, further improved conductivity was achieved when the MCC was modified with quantitative quaternary ammonium salt. TGA showed that the addition of QMCC improved the water retention of the matrix, which was beneficial to the OH- conduction in the system. Compared to the control (50 mS cm-1), a maximum conductivity of 238 mS cm-1 was obtained after the incorporation of QMCC in the PVA matrix. Moreover, the tensile strength of the polymer electrolyte were also significantly increased with the addition of QMCC. Finally, this developed ASPE membrane was used in assembling a flexible Zn-air battery and showed a promising potential in the development of flexible electronic devices.

16.
Chempluschem ; 85(9): 2158-2165, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32955799

RESUMO

Introducing self-healing properties into hydrogels can prolong their application lifetime. However, achieving mechanical strength without sacrificing self-healing properties is still a major challenge. We prepared a series of zwitterionic polymer hydrogels by random copolymerization of zwitterionic ionic monomer (SBMA), cationic monomer (DAC) and hydrophilic monomer (HEMA). The ionic bonds and hydrogen bonds formed in the hydrogels can efficiently dissipate energy and rebuild the network. The resulting hydrogels show high mechanical strength (289-396 KPa of fracture stress, 433-864 % of fracture stress) and have great fatigue resistance. The hydrogel with a 1 : 1 molar ratio of SBMA:DAC possesses the best self-healing properties (self-healing efficiency up to 96.5 % at room temperature for 10 h). The self-healing process is completely spontaneous and does not require external factors to assist. In addition, the hydrogel also possesses notch insensitivity with a fracture energy of 12000 J m-2 . After combining the conductivity of RGO aerogel, the hydrogel/RGO composites show good strain sensitivity with high reliability and self-healing ability, which has certain significance in broadening the application of these zwitterionic hydrogels.

17.
Int J Biol Macromol ; 159: 1197-1205, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417547

RESUMO

A type of zwitterionic chitosan derivative, N-2-hydroxylpropyl-3-trimethylammonium-O-carboxymethyl chitosan (HTCMCh), was synthesized and introduced into carboxymethyl cellulose (CMC)-based films as a film strength enhancer and antibacterial agent. The influencing factors include degree of substitution (DS) and mHTCMCh/mCMC. Their influences on mechanical properties, thermal stability, antibacterial activities, microstructures, transmittance, and wettability of the CMC-based films were studied. It was found that HTCMCh improves the tensile strength (by 9.0-130.9%), Young's modulus (47.8-351.6%), and elongation at break (90.8-280.8%) of CMC/HTCMCh films simultaneously, depending on the DS and mass content of HTCMCh. However, the HTCMCh shows little influence on microstructure and thermal stability of CMC/HTCMCh films. Satisfactorily, CMC/HTCMCh films show strong antibacterial activities against E. coli and S. aureus and are nontoxic to fibroblast HFF-1 cells. Pork packaging experiments demonstrated that CMC/HTCMCh10%,0,58 film could significantly inhibit bacterial growth, indicating that the HTCMCh-doped CMC films could be used as food packaging materials.


Assuntos
Antibacterianos/química , Carboximetilcelulose Sódica/química , Quitosana/análogos & derivados , Filmes Comestíveis , Módulo de Elasticidade , Compostos de Amônio Quaternário/química , Resistência à Tração , Antibacterianos/farmacologia , Linhagem Celular , Quitosana/química , Embalagem de Alimentos/métodos , Humanos , Carne de Porco/normas , Staphylococcus aureus/efeitos dos fármacos
18.
Carbohydr Polym ; 237: 116112, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241407

RESUMO

Chitosan has attracted much attention in drug delivery, however, carboxymethyl chitosan (CMC)-based self-aggregated nanocarriers are seldom reported. In this paper, two kinds of CMC-based pH-responsive amphiphilic chitosan derivatives, N-2-hydroxylpropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxylpropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC), have been synthesized by the homogeneous reaction. The molecular structures were characterized by FTIR, 1H NMR and 13C NMR. The optimum reaction condition was obtained based on the data of 1H NMR spectrum: reaction time of 4 h, reaction temperature of 80 °C and nepoxyn-NH2 of 3/1, respectively. The XRD patterns showed the crystallinity of HBCC and H2ECC decreased due to the introduction of hydrophobic segments. The thermostability of HBCC and H2ECC was improved for the formation of heat-resistant stereo-complexed structures. The intermolecular hydrophobic interaction hindered the intermolecular mobility by increasing glass transition temperature of ca. 10 °C. Both HBCC and H2ECC have very low critical aggregation concentrations (HBCC: 0.66-1.56 g/L, H2ECC: 0.57-1.07 g/L) and moderate aggregate particle size, which is advantageous for utilization as a drug carrier. The curcumin loaded HBCC and H2ECC aggregates showed nontoxicity, meanwhile, HBCC and H2ECC showed good antibacterial activity against Staphylococcus aureus and Escherichia coli. As a result of these two favorable properties, HBCC and H2ECC could be used as curcumin nanocarriers as well as antibacterial agents.

19.
Int J Biol Macromol ; 144: 568-577, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857162

RESUMO

N-2-hydroxylpropyl-3-trimethylammonium-O-carboxymethyl chitosan (HTCMCh) was synthesized through homogeneous reaction. The effects of different reaction condition on the properties of HTCMCh were characterized by FTIR, NMR, SEM, TEM, DLS, XRD, TGA, and DSC. The results of FTIR spectra, 1H NMR, and 13C NMR proved the successful synthesis of HTCMCh. The DS was dependent upon reaction time and pretreated pH of the starting material, independent of temperature and nepoxy/n-NH2. With increasing reaction time, the crystallinity of HTCMCh decreased, and the intermolecular interactions transformed from hydrogen bonding to strong electrostatic interactions, which enhanced HTCMCh thermal stability. SEM observations showed smooth cross section morphologies of HTCMCh films. With the increase in reaction time, the tensile strength significantly increased. The viscoelasticity transformed from viscous to elastic with aging time, confirming the formation of polyelectrolyte complexes. The optimum reaction conditions: reaction time of 2 h, an initial material pH of 9.47, nepoxy/n-NH2 of 2/1.


Assuntos
Quitosana/análogos & derivados , Membranas Artificiais , Quitosana/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Resistência à Tração
20.
ACS Omega ; 4(14): 16080-16087, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592475

RESUMO

A double-network strategy to toughen epoxy resin system is presented herein. Dihydrocoumarin (DHC), a hexatomic compound extracted from tonka bean, is used as the building block for the construction of the first network, and the diglycidyl ether of bisphenol A epoxy matrix is used as the second network. The resultant double network demonstrates a single glass transition and good compatibility between these two networks. Owing to the firm interfacial adhesion between networks and the effective stress transfer as well as external energy absorption derived from the DHC-based network, the double-network-based epoxy resin shows a significant toughness improvement without trade-offs in the tensile strength and elongation at break. The finding in this study provides a promising way to overcome the intrinsic brittleness of commercial epoxy resin via the utilization of renewable DHC for the construction of a novel double network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...