RESUMO
OBJECTIVE: The optimal strategy for fluid management during gastrointestinal surgery remains unclear. Minimizing the variation in arterial pulse pressure, which is induced by mechanical ventilation, is a potential strategy to improve postoperative outcomes. We tested this hypothesis in a prospective, randomized study with lactated Ringer's solution and 6% hydroxyethyl starch solution. METHOD: A total of 60 patients who were undergoing gastrointestinal surgery were randomized into a restrictive lactated Ringer's group (n = 20), a goal-directed lactated Ringer's group (n = 20) and a goal-directed hydroxyethyl starch group (n = 20). The goal-directed fluid treatment was guided by pulse pressure variation, which was recorded during surgery using a simple manual method with a Datex Ohmeda S/5 Monitor and minimized to 11% or less by volume loading with either lactated Ringer's solution or 6% hydroxyethyl starch solution (130/0.4). The postoperative flatus time, the length of hospital stay and the incidence of complications were recorded as endpoints. RESULTS: The goal-directed lactated Ringer's group received the greatest amount of total operative fluid compared with the two other groups. The flatus time and the length of hospital stay in the goal-directed hydroxyethyl starch group were shorter than those in the goal-directed lactated Ringer's group and the restrictive lactated Ringer's group. No significant differences were found in the postoperative complications among the three groups. CONCLUSION: Monitoring and minimizing pulse pressure variation by 6% hydroxyethyl starch solution (130/0.4) loading during gastrointestinal surgery improves postoperative outcomes and decreases the discharge time of patients who are graded American Society of Anesthesiologists physical status I/II.
Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/métodos , Hidratação/métodos , Adulto , Idoso , Análise de Variância , Pressão Sanguínea , Feminino , Humanos , Derivados de Hidroxietil Amido/administração & dosagem , Período Intraoperatório , Soluções Isotônicas/administração & dosagem , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Solução de Ringer , Estatísticas não Paramétricas , Fatores de Tempo , Resultado do TratamentoRESUMO
OBJECTIVE: The optimal strategy for fluid management during gastrointestinal surgery remains unclear. Minimizing the variation in arterial pulse pressure, which is induced by mechanical ventilation, is a potential strategy to improve postoperative outcomes. We tested this hypothesis in a prospective, randomized study with lactated Ringer's solution and 6% hydroxyethyl starch solution. METHOD: A total of 60 patients who were undergoing gastrointestinal surgery were randomized into a restrictive lactated Ringer's group (n = 20), a goal-directed lactated Ringer's group (n = 20) and a goal-directed hydroxyethyl starch group (n = 20). The goal-directed fluid treatment was guided by pulse pressure variation, which was recorded during surgery using a simple manual method with a Datex Ohmeda S/5 Monitor and minimized to 11% or less by volume loading with either lactated Ringer's solution or 6% hydroxyethyl starch solution (130/0.4). The postoperative flatus time, the length of hospital stay and the incidence of complications were recorded as endpoints. RESULTS: The goal-directed lactated Ringer's group received the greatest amount of total operative fluid compared with the two other groups. The flatus time and the length of hospital stay in the goal-directed hydroxyethyl starch group were shorter than those in the goal-directed lactated Ringer's group and the restrictive lactated Ringer's group. No significant differences were found in the postoperative complications among the three groups. CONCLUSION: Monitoring and minimizing pulse pressure variation by 6% hydroxyethyl starch solution (130/0.4) loading during gastrointestinal surgery improves postoperative outcomes and decreases the discharge time of patients who are graded American Society of Anesthesiologists physical status I/II.