Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 336: 199194, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579847

RESUMO

As a highly pathogenic large DNA virus, African swine fever virus (ASFV) has huge particles and numerous encoded proteins. At present, few of the existing studies on ASFV proteins have investigated the function of p17. Specific antibodies against p17 to promote the development of prevention techniques against African swine fever (ASF) are urgently needed. Herein, we successfully expressed ASFV p17 in CHO cells using a suspension culture system and generated a monoclonal antibody (mAb) against p17. The mAb recognized a novel linear epitope (8LLSHNLSTREGIK20) and exhibited specific reactivity, which was conducive to the identification of ectopically expressed p17, the recombinant porcine reproductive and respiratory syndrome virus expressing p17, and the ASFV-SY18. The epitope was conservative among genotype I and genotype II ASFV strains. Overall, the mAb against p17 revealed efficient detection and promising application prospects, making it a useful tool for future vaccine research on ASF. Determination of the conserved linear epitope of p17 would contribute to the in-depth exploration of the biological function of ASFV antigen protein.

2.
Front Vet Sci ; 9: 930871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812861

RESUMO

Pseudorabies (PR) is a serious disease affecting the pig industry in China, and it is very important to understand the epidemiology of pseudorabies virus (PRV). In the present study, 693 clinical samples were collected from Bartha-K61 vaccinated pigs with symptoms of suspected PRV infection between January 2017 and December 2018. All cases were referred for full clinical autopsy with detailed examination of histopathological examination, virus isolation and genetic evolution analysis of the PRV glycoprotein E (gE) gene. In addition, PRV gE antibodies in 3,449 serum samples were detected by the enzyme-linked immunosorbent assay (ELISA). The clinical data revealed that abortion and stillbirth are the most frequent appearances in pregnant sows of those cases. Histopathological examination exhibited a variety of pathological lesions, such as lobar pneumonia, hepatitis, lymphadenitis, nephritis, and typical nonsuppurative encephalitis. A total of 248 cases tested positive for the PRV gE gene. 11 PRV variants were isolated and confirmed by gE gene sequencing and phylogenetic analysis. These strains had 97.1%-100.0% nucleotide homology with the PRV reference strains. Notably, the isolated strains were highly homologous and clustered in the same branch as HSD-1/2019, which caused human acute encephalitis. Serological tests showed that the positive rate of PRV gE antibody in the 3449 serum samples collected from the Hebei Province was 46.27%. In conclusion, PRV variant strains Are high prevalence in the Hebei Province, which not only causes huge economic losses to the breeding industry but also potentially poses a threat to public health.

3.
Front Cell Infect Microbiol ; 12: 892864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669119

RESUMO

Influenza virus is a serious threat to global human health and public health security. There is an urgent need to develop new anti-influenza drugs. Lentinan (LNT) has attracted increasing attention in recent years. As potential protective agent, LNT has been shown to have anti-tumor, anti-inflammatory, and antiviral properties. However, there has been no further research into the anti-influenza action of lentinan in vivo, and the mechanism is still not fully understood. In this study, the anti-influenza effect and mechanism of Lentinan were studied in the Institute of Cancer Research (ICR) mouse model. The results showed that Lentinan had a high degree of protection in mice against infection with influenza A virus, delayed the emergence of clinical manifestations, improved the survival rate of mice, significantly prolonged the middle survival days, attenuated the weight loss, and reduced the lung coefficient of mice. It alleviated the pathological damage of mice infected with the influenza virus and improved blood indices. Lentinan treatment considerably inhibited inflammatory cytokine (TNF-α, IL-1ß, IL-4, IL-5, IL-6) levels in the serum and lung and improved IFN-γ cytokine levels, which reduced cytokine storms caused by influenza virus infection. The underlying mechanisms of action involved Lentinan inhibiting the inflammatory response by regulating the TLR4/MyD88 signaling pathway. This study provides a foundation for the clinical application of Lentinan, and provides new insight into the development of novel immunomodulators.


Assuntos
Influenza Humana , Neoplasias , Infecções por Orthomyxoviridae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Influenza Humana/tratamento farmacológico , Lentinano/farmacologia , Lentinano/uso terapêutico , Camundongos , Camundongos Endogâmicos ICR , Infecções por Orthomyxoviridae/tratamento farmacológico
4.
Front Immunol ; 13: 1103166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700212

RESUMO

African swine fever (ASF) is a contagious infectious disease with high lethality which continuously threatens the global pig industry causing huge economic losses. Currently, there are no commercially available vaccines or antiviral drugs that can effectively control ASF. The pathogen of ASF, ASF virus (ASFV) is a double-stranded DNA virus with a genome ranging from 170 to 193 kb and 151 to 167 open reading frames in various strains, which encodes 150-200 proteins. An effective method of monitoring ASFV antibodies, and specific antibodies against ASFV to promote the development of prevention techniques are urgently needed. In the present study, pK205R of ASFV was successfully expressed in mammalian cells using a suspension culture system. An indirect enzyme-linked immunosorbent assay (ELISA) based on the purified pK205R was established and optimized. The monoclonal antibody (mAb) against pK205R recognized a conservative linear epitope (2VEPREQFFQDLLSAV16) and exhibited specific reactivity, which was conducive to the identification of the recombinant porcine reproductive and respiratory syndrome virus (PRRSV) expressing pK205R. The ELISA method efficiently detected clinical ASFV infection and revealed good application prospects in monitoring the antibody level in vivo for recombinant PRRSV live vector virus expressing the ASFV antigen protein. The determination of the conserved linear epitope of pK205R would contribute to further research on the structural biology and function of pK205R. The indirect ELISA method and mAb against ASFV pK205R revealed efficient detection and promising application prospects, making them ideal for epidemiological surveillance and vaccine research on ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Anticorpos Monoclonais , Animais , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Suínos , Proteínas Virais
5.
Viruses ; 15(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36680090

RESUMO

Since 2018, the outbreak and prevalence of the African swine fever virus (ASFV) in China have caused huge economic losses. Less virulent ASFVs emerged in 2020, which led to difficulties and challenges for early diagnosis and control of African swine fever (ASF) in China. An effective method of monitoring ASFV antibodies and specific antibodies against ASFV to promote the development of prevention techniques are urgently needed. In the present study, ASFV p17 was successfully expressed in CHO cells using a suspension culture system. An indirect enzyme-linked immunosorbent assay (ELISA) based on purified p17 was established and optimized. The monoclonal antibody (mAb) against p17 recognized a conservative linear epitope (3TETSPLLSH11) and exhibited specific reactivity, which was conducive to the identification of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) expressing p17. The ELISA method efficiently detected clinical ASFV infection and effectively monitored the antibody levels in vivo after recombinant PRRSV live vector virus expressing p17 vaccination. Overall, the determination of the conserved linear epitope of p17 would contribute to the in-depth exploration of the biological function of the ASFV antigen protein. The indirect ELISA method and mAb against ASFV p17 revealed efficient detection and promising application prospects, making them ideal for epidemiological surveillance and vaccine research on ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Cricetinae , Febre Suína Africana/diagnóstico , Febre Suína Africana/prevenção & controle , Febre Suína Africana/epidemiologia , Proteínas Virais , Anticorpos Monoclonais , Cricetulus , Vacinas Sintéticas , Ensaio de Imunoadsorção Enzimática , Anticorpos Antivirais
6.
Front Microbiol ; 12: 822749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069517

RESUMO

The recombinant bivalent live vectored vaccine rPRRSV-E2 has been proved to be a favorable genetic engineering vaccine against classical swine fever (CSF) and highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS). NADC30-like strains have recently emerged in China and caused severe disease, and it is necessary to evaluate the vaccine candidate for the currently circulating viruses. This study established a good challenge model to evaluate the candidate rPRRSV-E2 vaccine in preventing infection with a representative NADC30-like strain (ZJqz21). It was shown that the challenge control piglets displayed clinical signs typical of PRRSV, including a persistent fever, dyspnea, moderate interstitial pneumonia, lymph node congestion, and viremia. In contrast, the rPRRSV-E2 vaccination significantly alleviated the clinical signs, yielded a high level of antibodies, provided adequate protection against challenge with ZJqz21, and inhibited viral shedding and the viral load in target tissues. Our results demonstrated that the recombinant bivalent live vectored vaccine strain rPRRSV-E2 can provide efficient protection against the challenge of heterologous circulating NADC30-like strain and could be a promising vaccine candidate for the swine industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...