Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36183605

RESUMO

Ethnomedicine Eerdun Wurile (EW) can significantly promote poststroke neuro-recovery through modulation of microglia polarization. Fraction 4-6 (F4-6) isolated from EW via serial fractionation inhibits the expression of pro-inflammatory genes in LPS stimulated microglia. However, the key active molecules of F4-6 have not been identified. Herein, we identified alantolactone (Ala) and dehydrodiisoeugenol (Deh) as the active anti-inflammatory components of F4-6 by UPLC-qTof MS analysis. We confirmed that, F4-6, Ala, Deh and mixture of Ala and Deh (Mix) downregulate the expression of several pro-inflammatory genes including Ccl2, Cox2 and Il6 in LPS-treated microglia in a similar pattern. At the same time upregulate the expression of anti-inflammatory genes including Hmox1, Tgfß, Igf1 and Creb1. Moreover, the conditioned culture media obtained from F4-6 treated microglia significantly enhanced proliferation of N2a cells, and promoted neurite outgrowth possibly through upregulation of Nefh and Dlg4. Mechanistically, F4-6 strongly downregulated the expression of NF-κB p65, while also inhibiting the nuclear translocation of p65, leading to the suppression of transcription of pro-inflammatory genes initiated by NF-κB. Collectively, our data identified and quantified the key chemicals of EW and provide insights into the optimization of the herbal composition for neuroprotection.


Assuntos
Microglia , NF-kappa B , Microglia/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
2.
Int J Biol Macromol ; 193(Pt A): 866-873, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743942

RESUMO

Receptor-mediated endocytosis has been used for tissue targeted delivery of short interfering RNA (siRNA) drugs. Herein, we investigated adenosine receptor (AR) as a candidate for receptor-mediated siRNA internalization. We synthesized adenosine functionalized cationic curdlan derivatives (denote CuAMP polymers). One of these polymers, CuAMP4, efficiently delivered siRNA to breast cancer cells expressing high level of A2B receptor. The internalization of siRNA loaded CuAMP4 by cancer cells was inhibited by free AMP as well as endocytosis inhibitors. Moreover, knockdown of A2BR by siRNA, or pre-treatment of the cells with anti-A2BR antibody, strongly inhibited the cellular uptake of CuAMP4. Our findings confirmed that A2BR can be utilized for cell type specific siRNA delivery, and CuAMP4 NP may be a promising delivery system for cancer cell targeted delivery of therapeutic siRNAs.


Assuntos
Monofosfato de Adenosina/farmacologia , Receptor A2B de Adenosina/metabolismo , beta-Glucanas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Nanopartículas , RNA Interferente Pequeno/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34457033

RESUMO

The activated microglia contribute to stroke-induced neuroinflammation by upregulating the expression of a pleura of genes that are characterized as either proinflammatory or anti-inflammatory. The natural products alantolactone (Ala) and dehydrodiisoeugenol (Deh) found in Inula helenium L. and Myristica fragrans Houtt., respectively, are regularly used in traditional herb medicine, which play anti-inflammatory and antioxidant roles via regulation of canonical pathways such as nuclear factor kappa B (NF-κB) in microglia and microphages. To illustrate the full spectra of gene expression alteration in microglia treated with Ala, Deh, and the mixture of Ala and Deh (denoted as Mix), we performed RNA-seq analysis of total RNA extracted from lipopolysaccharide- (LPS-) treated microglia subsequently exposed to Ala, Deh, and Mix. While both chemicals regulated the gene expression that facilitates an anti-inflammatory polarization, the mixture exerted some distinctive synergic regulatory effect, which differed from either of the chemicals alone. Our data provide important evidence for further research on the therapeutic mechanism of traditional medicine including Eerdun Wurile (EW).

4.
J Ethnopharmacol ; 246: 112241, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31533078

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Mongolian medicine Eerdun Wurile (EW) has remarkable neural recovery effect, and has been playing a key role in the clinical treatment of neurological disorders including ischemic stroke in Inner Mongolia Autonomous Region of China. The preliminary pharmacological studies in animal suggested that EW regulates the expression of trophic factors in brain lesion and may also balance the polarization of activated microglia (Gaowa et al., 2018). AIM OF THE STUDY: The pool of leading bioactive chemicals underlying the therapeutic effects of EW has not been identified. Therefore, the mechanism of action of EW is poorly understood. This study was aimed to identify the major group of compounds that contribute to the inhibition of neuroinflammation during stroke recovery through regulation of microglia polarization. MATERIALS AND METHODS: The extracts of EW in different solvents were evaluated for their inhibitory ability of cytokine (IP-10) expression in LPS stimulated BV2 cells. The most effective extract (of petroleum ether extract) was further separated to 18 fractionations on a semi-preparative HPLC column, which were assess for the IP-10 down-regulation efficiency by RT-qPCR. The potent isolate was further fractionated in 12 fractions, which showed fewer peaks. The fraction 6 from this isolates, which remarkably down-regulates cytokines expression including IP-10, TNFα and IL-1ß, was analyzed on UPLC-qTOF MS. The key chemicals were measured for their cytokine inhibition in BV2 cells and mouse primary microglia. RESULTS: After two consecutive fractionating by preparative HPLC, petroleum ether extraction of EW gave 12 fractions with relatively distinctive chromatograms. A particular fraction (fraction 6) preserved the inhibitory effects on expression of pro-inflammatory cytokines including IP-10, TNFα, IL-1ß and iNOS. The result of UPLC-qTOF MS analysis showed that the fraction contains 21 chemicals including costunolide, alantolactone, myristicin and linolenic acid, which significantly down-regulate the expression of key pro-inflammatory cytokines in LPS stimulated BV2 cells as well as mouse primary microglia. CONCLUSION: Collectively our data suggest that the bioactive chemical pool which is responsible for the therapeutic effects of EW can be extracted in petroleum ether, and fractionated to a relatively small multiple components. Such components include known anti-inflammatory chemicals, which may contribute to the possible microglia polarization in brain lesion during the recovery of ischemic stroke.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Medicina Tradicional da Mongólia , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Linhagem Celular , Regulação para Baixo , Humanos , Inflamação/metabolismo , Medicina Tradicional , Extratos Vegetais/química
5.
J Ethnopharmacol ; 222: 249-260, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29758340

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eerdun Wurile (EW) is one of the key Mongolian medicines for treatment of neurological and cardiological disorders. EW is ranked most regularly used Mongolian medicine in clinic. Components of EW which mainly originate from natural products are well defined and are unique to Mongolian medicine. AIM OF THE STUDY: Although the recipe of EW contains known neuroactive chemicals originated from plants, its mechanism of action has never been elucidated at molecular level. The objective of the present study is to explore the mechanism of neuroregenerative activity of EW by focusing on the regulation of gene expression in the brain of rat model of stroke. MATERIALS AND METHODS: Rat middle cerebral artery occlusion (MCAO) models were treated with EW for 15 days. Then, total RNAs from the cerebral cortex of rat MCAO models treated with either EW or control (saline) were extracted and analyzed by transcriptome sequencing. Differentially expressed genes were analyzed for their functions during the recovery of ischemic stroke. The expression level of significantly differentially expressed genes such as growth factors, microglia markers and secretive enzymes in the lesion was further validated by RT-qPCR and immunohistochemistry. RESULTS: Previously identified neuroactive compounds, such as geniposide (Yu et al., 2009), myristicin (Shin et al., 1988), costunolide (Okugawa et al., 1996), toosendanin (Shi and Chen, 1999) were detected in EW formulation. Bederson scale indicated that the treatment of rat MCAO models with EW showed significantly lowered neurological deficits (p < 0.01). The regional cerebral blood circulation was also remarkably higher in rat MCAO models treated with EW compared to the control group. A total of 186 genes were upregulated in the lesion of rat MCAO models treated with EW compared to control group. Among them, growth factors such as Igf1 (p < 0.05), Igf2 (p < 0.01), Grn (p < 0.01) were significantly upregulated in brain after treatment of rat MCAO models with EW. Meanwhile, greatly enhanced expression of microglia markers, as well as complementary components and secretive proteases were also detected. CONCLUSION: Our data collectively indicated that EW enhances expression of growth factors including Igf1 and Igf2 in neurons and microglia, and may stimulate microglia polarization in the brain. The consequences of such activity include stimulation of neuron growth, hydrolysis and clearance of cell debris at the lesion, as well as the angiogenesis.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Exsudatos de Plantas/uso terapêutico , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Masculino , Medicina Tradicional da Mongólia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/uso terapêutico , Exsudatos de Plantas/análise , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...