Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139245, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583402

RESUMO

Accurate consumer perception of food packages should provide real-time feedback on any changes inside food packaging. Hence, a new multilayer gas-sensitive label (POA-12) was prepared using a layer-by-layer pouring method for simple, visual, and real-time detection of pork's freshness, while the front side was developed by immobilizing red carbon dots and fluorescein isothiocyanate in POA as indicator for volatile nitrogen, and the back side was created using bromothymol blue in POA as pH indicator. The swelling index of the multilayer gas-sensitive labels reduced from 159.19% to 148.36%, and the tensile strength increased from 25.52 MPa to 42.61 MPa. In addition, the POA-12 multilayer label showed a red-to-yellow fluorescence change as TVB-N increased from 6.84 to 31.4 and a yellow-brown-to-blue-green color change as pH increased from 5.74 to 7.24 when detecting pork samples. Thus, it provides dual-indicator monitoring that improves the accuracy and reliability of assessing the freshness of high-protein products.


Assuntos
Ágar , Embalagem de Alimentos , Animais , Embalagem de Alimentos/instrumentação , Suínos , Ágar/química , Concentração de Íons de Hidrogênio , Rotulagem de Alimentos , Gases/química , Gases/análise , Carne de Porco/análise , Carne/análise , Cor
2.
Small ; 20(1): e2304720, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649208

RESUMO

The development of nanomaterials with high photothermal conversion efficiency has been a hot issue. In this work, a novel photothermal nanomaterial is synthesized using Prussian blue nanocubes (PBNCs) as the photothermal active substance and covalent organic framework (COF) as the substrate. The as-prepared COF@PBNCs show a high photothermal conversion efficiency of 59.1%, significantly higher than that of pure PBNCs (32.5%). A new circuit path is generated with the combination of COF, which prevents the direct combination of thermal electrons and holes, as well as enhances the nonradiation transition of PBNCs. Besides, the imine groups on COF as the coordination and reduction agent allow the in situ growth of PBNCs, and the dense micropores of COF as the ideal heat conduction channels can also be the potential factors for the enhanced photothermal property. The photothermal property of COF@PBNCs is further used in the construction of immunosensor for the detection of furosemide (FUR). With the help of handheld thermal imager, the concentration of FUR can be easily read, thus shedding a new light in the construction of visual sensor for simple and low-cost point-of-care testing.

3.
Anal Chem ; 95(48): 17878-17885, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37978921

RESUMO

In this article, we report on the first distance-based readout self-powered potentiometric sensor. The approach is considered more user-friendly for detection by the naked eye and is less prone to optical interferences compared with a direct observation of the pixel darkening. pH-selective electrodes were chosen as a model system to demonstrate the principle in which seven bar-shaped pixels connected in series on one e-paper share one common ground. By connecting each of the pixels serially to capacitors of different capacitances, the fraction of the measurement cell voltage loaded onto the pixels becomes controllable. Consequently, the pixels give different gray values when powered by the same ion-selective electrode (ISE). As a result, the pH information on the sample is visualized as a distance-based signal and the dependence between the capacitance and 1/K (the reciprocal slope in the relationship between absorbance and pH) was constructed. In the current system, a 1 µF capacitance difference changes the value of 1/K by 4.18. With the current setup, the pH accuracy is about 0.5 when comparing the e-paper output to a color card.

4.
Anal Chem ; 95(48): 17444-17449, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37978946

RESUMO

Self-powered potentiometric sensors are attractive because of their simple operation, low cost, fast response, and ability to be integrated with electronic components. Self-powered potentiometric sensors that give a direct colorimetric output are especially interesting, because no power supply is needed, which dramatically reduces waste. Recently reported work from our group using an electronic paper display, however, exhibits limitations, because the visualization of small pH changes is difficult. A self-powered ion-selective potentiometric sensor is introduced here that may amplify the e-paper pixel sensitivity by improving the self-powered circuit. The voltage is amplified by changing the circuit from incorporating parallel to incorporating serial capacitors. With three such capacitors, a greatly improved sensitivity is observed, amplifying the absorbance 3-fold. A portable device is realized that changes the position of the capacitors from parallel to serial through a simple mechanical sliding action. As a result, the pH information on the sample is more easily visualized with a pH uncertainty of about 0.1 when comparing the e-paper output to a color card.

5.
Anal Chem ; 95(30): 11383-11390, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458998

RESUMO

Point-of-care testing (POCT), with its portability and high sensitivity, is an analytical device for rapid on-site sensing and detection. In this study, a POCT device was designed for the portable detection of illegal additives by integrating a coil device that can visually sense color distance and a two-electrode electrochemical system. Real-time monitoring of pressure changes was achieved by driving CeO2@Pt/Au nanoparticle (NP)-labeled antibodies into a competitive immunoreaction, in which CeO2 and Pt/Au synergistically catalyzed the production of large amounts of O2 from H2O2, leading to a significant increase in gas within the closed chamber. Attractively, the coil device converted the pressure stimulus into visually readable change in distance for semi-quantitative detection of the target substance, while the electrical signal output caused by the changes of the solution around the electrodes achieved accurate and reliable quantification of the target. In addition, the proposed dual-mode pressure immunoassay device has acceptable selectivity, stability, and reproducibility. Herein, this portable device, which enables target concentration readings by converting pressure into multiple signals, provides an effective way to visualize POCT assays in resource-limited areas.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sistemas Automatizados de Assistência Junto ao Leito , Ouro/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Limite de Detecção , Imunoensaio
6.
Biosens Bioelectron ; 234: 115338, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137191

RESUMO

The construction of an immunosensor based on ultralong chemiluminescence is challenged due to the shortage of highly efficient initiator for long and stable catalysis. Herein, the heterogeneous Au/Pt@CuO/Cu2O catalyst was used to investigate the structure-activity relationship, while Au/Pt significantly promotes the activity of CuO/Cu2O to catalyze H2O2 and thus produces ·OH and O2•- radicals in highly alkaline solutions, resulting in the strong and long chemiluminescence in the reaction with luminol (10 mL, more than 4 min with 1 µg catalyst). By using the Au/Pt@CuO/Cu2O as the label in the immunoassay, the strong and long chemiluminescence could initiate the photocurrent of the photoelectrochemical (PEC) substrate, and the luminescence time could influence the photocurrent extinction time, thus a self-powered time-resolved PEC immunosensor was developed to detect furosemide, showing a linear relationship between the extinction time and the logarithm of concentrations from 10-3 to 1 µg/L. This work not only experimentally verifies that the Pt-O-Cu bond in heterogeneous catalysts breaks the pH limitation of the Fenton reaction, but also realizes the chemiluminescence for self-powered time-resolved immunosensor, thereby expanding the portable applicability of chemiluminescence in food safety inspection, health monitoring, and biomedical detection without external light source.


Assuntos
Técnicas Biossensoriais , Luminescência , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio , Imunoensaio/métodos , Limite de Detecção
7.
Anal Chem ; 95(13): 5764-5772, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961977

RESUMO

Post-transcriptional regulators, microRNAs (miRNAs), are involved in the occurrence and progression of various diseases. However, due to the complexity of disease-related miRNA regulatory networks, the typing and identification of miRNAs have remained challenging. Herein, a linear ladder-like DNA nanoarchitecture (LDN) was constructed to promote the movement efficiency of the tripedal DNA walker (T-walker), which was combined with the DNA-based logic gates and the PTCDA@PDA/CdS/WO3 photoelectrode to develop a novel biosensor for the detection of dual-miRNAs. Two miRNAs, miR-122 and miR-21, were used as targets to operate the logic module, while its output, trigger strands (TSs), initiated a catalytic hairpin assembly (CHA) reaction to form a T-walker. By using LDN as the track, the T-walker efficiently unfolded hairpin 4, which further hybridized with the alkaline phosphatase-modified hairpin 5 (AP-H5). The remaining AP can catalyze the ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA), an ideal electron donor, thus resulting in a photocurrent change. The photocurrent signals of both AND and OR gates displayed a linear relationship with the logarithm of dual-miRNA concentrations with detection limits of 10.1 and 13.6 fM, respectively. Moreover, the intelligent and rational design of DNA tracks gives impetus to create a well-organized sensing interface with wide application in clinical diagnosis and cancer monitoring.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , DNA/química , Técnicas Biossensoriais/métodos , Lógica , Catálise , Limite de Detecção
8.
ACS Omega ; 8(5): 4639-4648, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777579

RESUMO

Organic dyes can produce harmful effects on the water environment, such as affecting the growth of aquatic organisms, reducing the transparency of water bodies, and causing eutrophication of water bodies, so it is necessary to mitigate the hazards of organic dyes. In this study, a metal-organic framework [NH2-MIL-101(Fe)] was synthesized by the solvothermal method as a carrier for the in situ uniform deposition of AgCl nanoparticles on its surface, which was successfully used for both adsorption and degradation of Congo red. Adsorption results showed that the adsorption kinetics conformed to the proposed secondary adsorption kinetics equation with a maximum adsorption capacity of 248.4 mg·g-1. Furthermore, the degradation results indicated that with the aid of sodium borohydride as a reducing agent, the degradation of Congo red followed pseudo-first-order kinetics with a degradation rate of 0.077 min-1, and the complete degradation of Congo red was finished within 18 min. Therefore, AgCl/NH2-MIL-101(Fe) may find a potential application in the removal of dyes from wastewater.

9.
Compr Rev Food Sci Food Saf ; 22(2): 1285-1311, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717757

RESUMO

Mycotoxin contamination in foods and other goods has become a broad issue owing to serious toxicity, tremendous threat to public safety, and terrible loss of resources. Herein, it is necessary to develop simple, sensitive, inexpensive, and rapid platforms for the detection of mycotoxins. Currently, the limitation of instrumental and chemical methods cannot be massively applied in practice. Immunoassays are considered one of the best candidates for toxin detection due to their simplicity, rapidness, and cost-effectiveness. Especially, the field of dual-mode immunosensors and corresponding assays is rapidly developing as an advanced and intersected technology. So, this review summarized the types and detection principles of single-mode immunosensors including optical and electrical immunosensors in recent years, then focused on developing dual-mode immunosensors including integrated immunosensors and combined immunosensors to detect mycotoxins, as well as the combination of dual-mode immunosensors with a portable device for point-of-care test. The remaining challenges were discussed with the aim of stimulating future development of dual-mode immunosensors to accelerate the transformation of scientific laboratory technologies into easy-to-operate and rapid detection platforms.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Micotoxinas/análise , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Alimentos
10.
Biosens Bioelectron ; 219: 114797, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252313

RESUMO

Nanozymes are commonly used in the construction of immunosensors, yet they are generally susceptible to pH condition, which greatly hindered their practical use. To break the limitation of pH conditions, polyethyleneimine-coated Prussian blue nanocubes (PBNCs@PEI) were synthesized as the pH-switchable nanozyme, which can show peroxidase-like and catalase-like activity in acidic and alkaline condition, respectively. Besides, the modification of PEI can largely improve the catalytic activity of PBNCs. Herein, the pH-switchable catalytic property of PBNCs@PEI was used to construct the dual-mode immunosensor for the detection of illegal additive, rosiglitazone. In acidic condition, PBNCs@PEI showed excellent peroxidase-like activity, which can trigger the colorimetric reaction of Au nanostars with TMB2+/CTAB. In alkaline condition, the catalase-like activity of PBNCs@PEI prevailed, thus the decomposition of H2O2 can generate O2 to initiate the aerobic oxidation of 4-chloro-1-naphthol (4-CN), which can decrease the fluorescence intensity of 4-CN. Based on the competitive immunoassay, both the localized surface plasmon resonance wavelength shift of Au nanostars and the fluorescence intensity change of 4-CN were quantitatively related with rosiglitazone concentration, thus shedding a new light on the construction of broad-pH-responsive immunosensor. Besides, a smart device was developed to transfer the chroma value of Au nanostars into the RSG concentration, making this sensor a promising method in on-site and point-of-care detection.


Assuntos
Técnicas Biossensoriais , Catalase , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Rosiglitazona , Imunoensaio/métodos , Concentração de Íons de Hidrogênio
11.
Colloids Surf B Biointerfaces ; 215: 112527, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504063

RESUMO

Colorimetric or fluorescent biosensors based on mimic enzymes have come into the spotlight in virtue of their visual detection. In traditional visual sensors, fluorescent-changing or color-changing substances should be introduced for the catalytic reaction with mimic enzymes. Herein, a mimic enzyme (Au@Fe-MIL-88B) with self-triggered fluorescent property was prepared. By incorporating Au nanoparticles (Au NPs) in Fe-MIL-88B, a higher peroxidase activity of Au@Fe-MIL-88B was monitored due to the synergistic effect between Au NPs and Fe-MIL-88B. Besides, Au NPs can change the valence of Fe ion in metal organic framework (MOF), thus lower background fluorescence was discovered, but the addition of H2O2 can trigger the self-fluorescence of Au@Fe-MIL-88B. By using Au@Fe-MIL-88B as a label to anchor secondary antibody, a competitive immunosensor based on fluorescence and photoelectrochemistry was constructed for the immunoassay of rosiglitazone (RSG), a kind of hypoglycemic drug. Finally, a portable instrument was homemade for the on-site and convenient detection of RSG in functional tea. This self-triggered fluorescent MOF may provide a possible route to design biosensors for the detection of hazardous materials.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Corantes , Ouro , Peróxido de Hidrogênio/química , Hipoglicemiantes , Imunoensaio , Estruturas Metalorgânicas/química , Chá
12.
Anal Chem ; 94(10): 4294-4302, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107977

RESUMO

The detection of rosiglitazone (RSG) in food is of great importance since the excessive intake of RSG could cause adverse effects on the human body. Although liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry are the preliminary methods for the detection of hazardous materials in food, they are not suitable for point-of-care or on-site detection. Herein, a time-based readout (TBR) device with an application software (APP) controlled by a smart phone was developed for the sensitive and selective immunoassay of RSG. The homemade TBR device was based on a two-electrode system, where the immune molecule-modified glassy carbon electrode was used as the bioanode, and Prussian blue-modified FTO was used as the cathode. By using Au-modified octahedral Cu2O with high catalytic activity as mimetic peroxidase, an insulating layer was generated on the cathode by catalyzing 4-chloro-1-naphthol (4-CN) into benzo-4-chlorohexadienone (B4Q). The time to reach a fixed potential varied indirectly with the concentrations of RSG and was recognized by the APP, while the electrochromic property on the cathode was also correspondingly changed. Under optimum conditions, both the square root of the time and the chroma value of the electrochromism exhibited linear responses for the detection of RSG ranging from 5 × 10-10 to 5 × 10-7 g/L, while the limits of detection were 8.2 × 10-11 and 1.3 × 10-10 g/L, respectively. With easy operation and portability, this TBR device showed a promising application for point-of-care monitoring of hazardous materials in food or the environment.


Assuntos
Técnicas Biossensoriais , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Eletrodos , Substâncias Perigosas , Humanos , Imunoensaio , Rosiglitazona
13.
Anal Chem ; 93(34): 11816-11825, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34461727

RESUMO

The abnormal expression of microRNA (miRNA) can affect the RNA transcription and protein translation, leading to tumor progression and metastasis. Currently, the accurate detection of aberrant expression of miRNA, particularly using a portable detection system, remains a great challenge. Herein, a novel dual-mode biosensor with high sensitivity and robustness for miR-21 detection was developed based on the cis-cleavage and trans-cleavage activities of Cas12a. miRNA can be combined with hairpin DNA-horseradish peroxidase anchored on a CdS/g-C3N4/B-TiO2 photoelectrode, thus the nonenzymatic amplification was triggered to form numerous HRP-modified double-stranded DNA (HRP-dsDNA). Then, HRP-dsDNA can be specifically recognized and efficiently cis-cleaved by Cas12a nucleases to detach HRP from the substrate, while the remaining HRP on HRP-dsDNA can catalyze 4-chloro-1-naphthol (4-CN) to form biocatalytic precipitation (BCP) on the surface of the photoelectrode, and thus the photocurrent can be changed. Meanwhile, the trans-cleavage ability of Cas12a was activated, and nonspecifically degrade the FQ-reporter and a significant fluorescence signal can be generated. Such two different kinds of signals with independent transmission paths can mutually support to improve the performance of the detection platform. Besides, a portable device was constructed for the point-of-care (POC) detection of miR-21. Moreover, the dual-mode detection platform can be easily expanded for the specific detection of other types of biomarkers by changing the sequence of hairpin DNA, thereby promoting the establishment of POC detection for early cancer diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Sistemas CRISPR-Cas , DNA , Peroxidase do Rábano Silvestre , MicroRNAs/genética
14.
Anal Chem ; 93(19): 7275-7282, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33957044

RESUMO

Organophosphorus pesticides (OPs) can inhibit the activity of acetylcholinesterase (AChE) to induce neurological diseases. It is significant to exploit a rapid and sensitive strategy to monitor OPs. Here, a metal-organic framework (MOF) acted as a carrier to encapsulate AuNCs, which can limit the molecular motion of AuNCs, trigger the aggregation-induced emission (AIE) effect, and exhibit a strong fluorescence with a fluorescence lifetime and quantum yield of 6.83 µs and 4.63%, respectively. Then, the marriage of fluorescence and colorimetric signals was realized on the basis of the dual function of the enzymolysis product from AChE and choline oxidase (CHO) on AuNCs@ZIF-8. First, it can decompose ZIF-8 to weaken the restraint on AuNCs, and thus the fluorescence receded. Second, it can be used as a substrate for the peroxidase mimics of the released AuNCs to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) and a visible blue appeared. Thus, on the basis of the inhibition of AChE activity by OPs, a fluorescence-colorimetric dual-signal biosensor was established. In addition, colorimetric paper strips were exploited to realize a visual semiquantitative detection, and a smartphone APP was developed to make the visualization results more precise and realize real-time supervision of pesticide contamination.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Praguicidas , Acetilcolinesterase , Colorimetria , Compostos Organofosforados , Praguicidas/análise
15.
J Hazard Mater ; 411: 125090, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33453667

RESUMO

The convenient and effective detection of toxins is urgently demanded for food security and human health. Herein, based on the catalytic activity of mimetic peroxidase from the Cu2O@Fe(OH)3 yolk-shell nanocages, a dual-modal multi-colorimetric and ratiometric fluorescence immunosensor for the sensitive detection of ochratoxin A (OTA) was successfully developed. For the multi-colorimetric detection, H2O2 can be effectively decomposed by Cu2O@Fe(OH)3 to form ·OH groups, thus Au nanorods (Au NRs) can be etched to exhibit vivid color variations and localized surface plasmon resonance (LSPR) shifts. For the ratiometric fluorescence detection, o-phenylenediamine was oxidized by Cu2O@Fe(OH)3 to form 2,3-diaminophenazine (DAP) in the presence of H2O2. Interestingly, the exogenous fluorescence signal source of carbon dots can be quenched by DAP via inner filter effect, while a new emission peak at 563 nm can be discovered, forming a ratiometric fluorescence signal. Due to the independent signals and mutual confirmation, the performance of the dual-modal immunosensor for the detection of OTA was significantly improved, where a broad linear range from 1 ng/L to 10 µg/L with a detection limit of 0.56 ng/L (S/N = 3) was achieved. The sensing strategy was also used to monitor OTA in millet and lake water samples with a satisfied performance.


Assuntos
Técnicas Biossensoriais , Colorimetria , Ocratoxinas/análise , Biomimética , Peróxido de Hidrogênio , Imunoensaio , Limite de Detecção , Peroxidase
16.
ACS Appl Mater Interfaces ; 11(27): 23832-23839, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31245985

RESUMO

In this study, a versatile dual-modal readout immunoassay platform was achieved for sensitive and broad-spectrum detection of ochratoxins based on the photocurrent response of flexible CdS/ZnO nanorod arrays/reduced graphene oxide and the localized surface plasmon resonance (LSPR) peak shift of Au nanobipyramids (Au NBPs). By using nanoliposomes as the vehicle to carry the secondary antibody and encapsulate horseradish peroxidase (HRP), the photocurrent change and the peak shift can be greatly amplified. The reaction mechanism was investigated in detail, indicating that HRP can trigger enzymatic bioetching in the presence of H2O2. In the photoelectrochemical detection, the oxidized HRP can etch CdS on the photoelectrode, resulting in the photocurrent change, while in the colorimetric detection, HRP can oxidize H2O2 to produce hydroxyl radicals that can etch Au NBPs to form multiple color changes and LSPR shifts. Compared with the common single-modal immunoassay for ochratoxins, such dual-modal immunoassay is more precise and reliable, owing to the completely independent signal conversion and transmission mechanism. Therefore, we hope that this accurate, simple, and visualized strategy may create a new avenue and provide innovative inspiration for food analysis.


Assuntos
Enzimas Imobilizadas/química , Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Ocratoxinas/análise , Peroxidase/química , Ressonância de Plasmônio de Superfície , Peróxido de Hidrogênio/química , Imunoensaio , Lipossomos
17.
Anal Chim Acta ; 1054: 128-136, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30712583

RESUMO

Recently, mimic enzymes have obtained particular interest by their high activity, stability, and biocompatibility. In this work, by coupling copper hydroxide nanozyme and G-quadruplex/hemin DNAzyme to form a double-integrated mimic enzyme, a visual, sensitive and selective immunosensor was established to detect microcystin-LR (MC-LR). In this immunoassay, the microplates were modified with core-shell silica/nickel silicate as the substrate to capture MC-LR antigens. Then, Cu(OH)2 nanocages with fine regulation were used as the label to capture the secondary antibody for immunoreaction and the DNA primer for propagation, followed by using hybridization chain reaction to amplify the DNA primer, thus numerous DNAzymes (G-quadruplex/hemin) can be formed on the surface of Cu(OH)2 nanocages with the aid of hemin. Such double-integrated mimic enzyme including Cu(OH)2 nanozymes and DNAzymes showed excellent peroxidase activity for the chromogenic reaction of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which realized the visual detection of MC-LR in the range from 0.007 to 75 µg/L with the detection limit of 6 ng/mL, and thus provided the probability for the portable assessment of MC-LR in real sample.


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , Cobre/química , DNA Catalítico/metabolismo , Quadruplex G , Hemina/metabolismo , Hidróxidos/química , Microcistinas/análise , Sequência de Bases , DNA Catalítico/química , DNA Catalítico/genética , Imunoensaio , Toxinas Marinhas , Nanoestruturas/química
18.
Anal Chem ; 90(15): 9606-9613, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29985599

RESUMO

Microcystins, the lethal cyanotoxins from Microcystis aeruginosa, can inhibit the activity of protein phosphatase and promote liver tumors. Herein, a dual-modal split-type immunosensor was constructed to detect microcystin-LR (MC-LR), based on the photocurrent change of CdS/ZnO hollow nanorod arrays (HNRs) and the blue shift of the surface plasmon resonance peak from Au nanobipyramids@Ag. By using mesoporous silica nanospheres as the carrier to immobilize secondary antibody and DNA primer, a hybridization chain reaction was adopted to capture alkaline phosphatase, while its catalytic reaction product, ascorbic acid, exhibited dual functions. The detailed mechanism was investigated, showing that ascorbic acid can not only act as the electron donor to capture the holes in CdS/ZnO-HNRs, leading to the increase photocurrent, but also as the reductant to form silver shells on Au nanobipyramids, generating multiply vivid color variations and blue shifts. Compared with the traditional photoelectrochemical immunosensor or colorimetric method for MC-LR, a more accurate and reliable result can be obtained, due to different mechanisms and independent signal transduction. Therefore, this work can not only propose a new dual-modal immunosensor for MC-LR detection but also provide innovative inspiration for constructing sensitive, accurate, and visual analysis for toxins.


Assuntos
Anticorpos Imobilizados/química , Compostos de Cádmio/química , Colorimetria/métodos , Microcistinas/análise , Nanotubos/química , Compostos de Selênio/química , Ressonância de Plasmônio de Superfície/métodos , Óxido de Zinco/química , Primers do DNA/química , Ouro/química , Imunoensaio/métodos , Limite de Detecção , Toxinas Marinhas , Nanopartículas Metálicas/química , Microcystis/química , Nanotubos/ultraestrutura , Prata/química
19.
Biosens Bioelectron ; 106: 219-226, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29428592

RESUMO

A broad-specific photoelectrochemical (PEC) immunosensor was developed for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C (OTA, OTB, OTC) by using the direct growth of CdS nanorods on FTO as the photoelectrode and Au nanoflowers-modified glass carbon electrode (GCE) as the bioelectrode. The bioelectrode was used to capture antigens and then associate corresponding antibodies, followed by using SiO2@Cu2+ nanocomposites to conjugate the secondary antibody (Ab2) and a DNA strand as the initiator. After the hybridization chain reaction (HCR) and the addition of hemin, numerous DNAzymes (G-quadruplex/hemin) were produced. Due to the similar enzymatic property with horseradish peroxidase (HRP), G-quadruplex/hemin can accelerate the oxidation of 4-chloro-1-naphthol (4-CN) with H2O2 to yield the biocatalytic precipitation (BCP) on the bioelectrode. Then, the bioelectrode was further treated with moderate acid and thus Cu2+ was released, which can decrease the photocurrent of the photoelectrode by the formation of CuS. Due to the advantages of surface effect of Au nanoflowers, DNA amplification and high photoelectrocatalytic activity, the proposed broad-specificity PEC immunosensor can detect OTA, OTB and OTC with a detection limit of 0.02, 0.04 and 0.03 pg/mL, respectively. In addition, the acceptable stability and selectivity suggest its possible application in the detection of OTA, OTB and OTC in water samples.


Assuntos
Técnicas Biossensoriais , Ocratoxinas/isolamento & purificação , Hemina/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Limite de Detecção , Nanocompostos/química , Dióxido de Silício/química
20.
Anal Chim Acta ; 994: 82-91, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29126472

RESUMO

An ultrasensitive photoelectrochemical (PEC) immunoassay based on multiple signal amplification strategy was fabricated for the detection of microcystin-LR (MC-LR). The CdS/TiO2 nanorod arrays (CdS/TiO2 NRAs) modified FTO electrode, which can weaken the self-oxidation by photogenerated holes of CdS nanoparticles, and limit the recombination of electron-hole pairs and broaden optical absorption of TiO2 NRAs, was used as a visible-light driven material to immobilize antigens. Then, Fe3O4 nanoparticles/polydopamine (Fe3O4@PDA) was used as the carrier to load secondary antibody (Ab2) and horseradish peroxidase (HRP), where Fe3O4 nanoparticles and HRP can synergistically accelerate the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce biocatalytic precipitation (BCP) on the surface of modified electrode. Due to the catalytic activity of Fe3O4 nanoparticles and HRP, the nonproductive absorption of HRP and the steric hindrance by BCP, the photocurrent change was amplified. The proposed PEC immunosensor can detect MC-LR in a range of 0.005-500 µg/L with a detection limit of 0.001 µg/L. Meanwhile, the PEC immunosensor exhibited high sensitivity, good stability, acceptable selectivity and reproducibility, indicating its potential application in environmental monitoring.


Assuntos
Técnicas Eletroquímicas , Imunoensaio , Microcistinas/análise , Compostos de Cádmio , Peróxido de Hidrogênio , Limite de Detecção , Toxinas Marinhas , Reprodutibilidade dos Testes , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...