Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(42): e2303474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37329197

RESUMO

Surface modification is an effective approach for overcoming the interfacial degradations to enable high electrochemical performance of battery materials, yet it is still challenging to realize high-quality surface modification with simple processing, low cost, and mass production. Herein, a thermal-induced surface precipitation phenomenon is reported in a Ti-dopped LiCoO2 , which can realize an ultrathin (≈5 nm) and uniform surface modification by a simple annealing process. It is revealed that surface Li-deficiency enables bulk Ti to precipitate and segregate on the non-(003) surface facets, forming a Ti-enriched disordered layered structure. Such a surface modification layer can not only stabilize the interfacial chemistry but also significantly improve the charge/discharge reaction kinetics, leading to much-improved cycling stability and rate capability. Dopants surface precipitation is a unique outward diffusion process, which differs from the current surface modification techniques and further diversifies these approaches for realizing high-quality surface modification of battery materials.

2.
J Struct Biol ; 215(3): 107971, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201639

RESUMO

The structural studies of macromolecules in their physiological context, particularly in tissue, is constrained by the bottleneck of sample preparation. In this study, we present a practical pipeline for preparing multicellular samples for cryo-electron tomography. The pipeline comprises sample isolation, vitrification, and lift-out-based lamella preparation using commercially available instruments. We demonstrate the efficacy of our pipeline by visualizing pancreatic ß cells from mouse islets at the molecular level. This pipeline enables the determination of the properties of insulin crystals in situ for the first time, using unperturbed samples.


Assuntos
Tomografia com Microscopia Eletrônica , Manejo de Espécimes , Animais , Camundongos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares , Manejo de Espécimes/métodos , Vitrificação
3.
Cell Discov ; 8(1): 141, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575193

RESUMO

Folate (vitamin B9) is the coenzyme involved in one-carbon transfer biochemical reactions essential for cell survival and proliferation, with its inadequacy causing developmental defects or severe diseases. Notably, mammalian cells lack the ability to de novo synthesize folate but instead rely on its intake from extracellular sources via specific transporters or receptors, among which SLC19A1 is the ubiquitously expressed one in tissues. However, the mechanism of substrate recognition by SLC19A1 remains unclear. Here we report the cryo-EM structures of human SLC19A1 and its complex with 5-methyltetrahydrofolate at 3.5-3.6 Å resolution and elucidate the critical residues for substrate recognition. In particular, we reveal that two variant residues among SLC19 subfamily members designate the specificity for folate. Moreover, we identify intracellular thiamine pyrophosphate as the favorite coupled substrate for folate transport by SLC19A1. Together, this work establishes the molecular basis of substrate recognition by this central folate transporter.

4.
Adv Sci (Weinh) ; 9(6): e2104141, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997681

RESUMO

Oxide semiconductors are key materials in many technologies from flat-panel displays,solar cells to transparent electronics. However, many potential applications are hindered by the lack of high mobility p-type oxide semiconductors due to the localized O-2p derived valence band (VB) structure. In this work, the VB structure modulation is reported for perovskite Ba2 BiMO6 (M = Bi, Nb, Ta) via the Bi 6s2 lone pair state to achieve p-type oxide semiconductors with high hole mobility up to 21 cm2 V-1 s-1 , and optical bandgaps widely varying from 1.5 to 3.2 eV. Pulsed laser deposition is used to grow high quality epitaxial thin films. Synergistic combination of hard x-ray photoemission, x-ray absorption spectroscopies, and density functional theory calculations are used to gain insight into the electronic structure of Ba2 BiMO6 . The high mobility is attributed to the highly dispersive VB edges contributed from the strong coupling of Bi 6s with O 2p at the top of VB that lead to low hole effective masses (0.4-0.7 me ). Large variation in bandgaps results from the change in the energy positions of unoccupied Bi 6s orbital or Nb/Ta d orbitals that form the bottom of conduction band. P-N junction diode constructed with p-type Ba2 BiTaO6 and n-type Nb doped SrTiO3 exhibits high rectifying ratio of 1.3 × 104 at ±3 V, showing great potential in fabricating high-quality devices. This work provides deep insight into the electronic structure of Bi3+ based perovskites and guides the development of new p-type oxide semiconductors.

5.
Angew Chem Int Ed Engl ; 60(20): 11481-11486, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33686746

RESUMO

High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries' life and power output. In this work, a high-capacity sodium storage material with FeS2 nanoclusters (≈1-2 nm) embedded in N, S-doped carbon matrix (FeS2 /N,S-C) was synthesized, the surface of which displays defects-repaired characteristic and detectable dot-matrix distributed Fe-N-C/Fe-S-C bonds. After the initial discharging process, the uniform ultra-thin NaF-rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra-high initial coulombic efficiency (≈92 %). The defects-repaired surface provides perfect platform, and the catalysis of dot-matrix distributed Fe-N-C/Fe-S-C bonds to the rapid decomposing of NaSO3 CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two-dimensional ultra-thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2 /N,S-C provides high reversible capacity (749.6 mAh g-1 at 0.1 A g-1 ) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g-1 ). Especially, at -15 °C, it also obtains a reversible capacity of 211.7 mAh g-1 at 10.0 A g-1 . Assembled pouch-type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.

6.
J Phys Chem Lett ; 11(3): 913-919, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31952443

RESUMO

Size and crystallinity of building units in the perovskite layer are of great significance to photovoltaic performance. Thus, to fabricate large-grain-size perovskite materials with the advantage of good crystallinity is quite necessary. The oriented attachment strategy has been proofed as an efficient method to control crystal growth. Herein, we reported on oriented attachment of α-CsPbI3 quantum dots (QDs) into a large-grain-size nanocrystal under moderate ultraviolet (UV) light. By virtue of atomic-resolution TEM and X-ray absorption fine structure (XAFS) spectroscopy, we observed the UV-directed structure-evolution and growth process. This is trigged by UV-light illumination (7 W, 365 nm), which drives the oriented assembly of QDs into a large nanoparticle along {110} facets. Moreover, we also visualized a damage process of the α-CsPbI3 QDs to photoinactive-δ-phase ones and finally into PbI2 under high-power UV-light (100 W, 365 nm) exposure. The findings provide a prototype for fabricating large-size perovskite nanostructures with promising properties.

7.
Nat Commun ; 11(1): 83, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913275

RESUMO

Architecting grain crystallographic orientation can modulate charge distribution and chemomechanical properties for enhancing the performance of polycrystalline battery materials. However, probing the interplay between charge distribution, grain crystallographic orientation, and performance remains a daunting challenge. Herein, we elucidate the spatially resolved charge distribution in lithium layered oxides with different grain crystallographic arrangements and establish a model to quantify their charge distributions. While the holistic "surface-to-bulk" charge distribution prevails in polycrystalline particles, the crystallographic orientation-guided redox reaction governs the charge distribution in the local charged nanodomains. Compared to the randomly oriented grains, the radially aligned grains exhibit a lower cell polarization and higher capacity retention upon battery cycling. The radially aligned grains create less tortuous lithium ion pathways, thus improving the charge homogeneity as statistically quantified from over 20 million nanodomains in polycrystalline particles. This study provides an improved understanding of the charge distribution and chemomechanical properties of polycrystalline battery materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...