Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(6): 2892-2904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411441

RESUMO

BACKGROUND: Given the chemical diversity within stink bugs scent glands, they can be convenient models for bioprospecting novel pest control products. Preliminary behaviour observations indicated that adult Mictis fuscipes stink bugs secrete liquid droplets when defending against Solenopsis invicta fire ants, killing them within minutes. Hence, this study aimed to analyse the chemical composition of the metathoracic scent gland secretions of M. fuscipes adults, as well as assess their biological activities against fire ants. RESULTS: Bioassaying fire ants against secretions of several local stink bugs confirmed that the defensive secretions of two Mictis species are significantly more lethal, where M. fuscipes was the most lethal. Volatiles chromatography analysis indicated the secretions of female and male M. fuscipes stink bugs contains 20 and 26 components, respectively, chiefly hexanoic acid and hexyl hexanoate. Five compounds were consistently present in the secretion of female adults: hexyl hexanoate, hexanoic acid, hexyl acetate, hexyl butyrate, and eugenol. These yielded a strong electrophysiological antennal (EAD) response from S. invicta workers, female alates and males, where hexyl acetate showed the strongest response. The combination of these five compounds proved strongly repellent to S. invicta. When tested singly, hexanoic acid, hexyl butyrate, hexyl hexanoate, and eugenol were repellent to S. invicta, but hexyl acetate seemed slightly attractive. Additionally, the same mixture of five components exhibited strong contact and fumigant toxicity towards S. invicta workers, eugenol being the strongest. CONCLUSION: Defensive chemicals of M. fuscipes exhibit robust biological activity against S. invicta and could inspire the development of biopesticides. © 2024 Society of Chemical Industry.


Assuntos
Formigas , Glândulas Odoríferas , Animais , Feminino , Masculino , Formigas/efeitos dos fármacos , Glândulas Odoríferas/química , Heterópteros/efeitos dos fármacos , Heterópteros/fisiologia , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , Formigas Lava-Pés
2.
J Fungi (Basel) ; 9(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888267

RESUMO

Metarhizium anisopliae, an entomopathogenic fungus, has been widely used for the control of agricultural and forestry pests. However, sporulation degeneration occurs frequently during the process of successive culture, and we currently lack a clear understanding of the underlying mechanisms. In this study, the metabolic profiles of M. anisopliae were comparatively analyzed based on the metabolomics approach of gas chromatography-mass spectrometry (GC-MS). A total of 74 metabolites were detected in both normal and degenerate strains, with 40 differential metabolites contributing significantly to the model. Principal component analysis (PCA) and potential structure discriminant analysis (PLS-DA) showed a clear distinction between the sporulation of normal strains and degenerate strains. Specifically, 23 metabolites were down-regulated and 17 metabolites were up-regulated in degenerate strains compared to normal strains. The KEGG enrichment analysis identified 47 significant pathways. Among them, the alanine, aspartate and glutamate metabolic pathways and the glycine, serine and threonine metabolism had the most significant effects on sporulation, which revealed that significant changes occur in the metabolic phenotypes of strains during sporulation and degeneration processes. Furthermore, our subsequent experiments have substantiated that the addition of amino acids could improve M. anisopliae's spore production. Our study shows that metabolites, especially amino acids, which are significantly up-regulated or down-regulated during the sporulation and degeneration of M. anisopliae, may be involved in the sporulation process of M. anisopliae, and amino acid metabolism (especially glutamate, aspartate, serine, glycine, arginine and leucine) may be an important part of the sporulation mechanism of M. anisopliae. This study provides a foundation and technical support for rejuvenation and production improvement strategies for M. anisopliae.

3.
J Org Chem ; 88(18): 12958-12970, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37620989

RESUMO

This work describes an effective C3-H halogenation of quinoline-4(1H)-ones under electrochemical conditions, in which potassium halides serve as both halogenating agents and electrolytes. The protocol provides expedient access to different halogenated quinoline-4(1H)-ones with unique regioselectivity, broad substrate scope, and gram-scale synthesis employing convenient, environmentally friendly electrolysis, in an undivided cell. Mechanism studies have shown that halogen radicals can promote the activation of N-H bonds in quinolones.

4.
J Insect Sci ; 23(2)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916278

RESUMO

Fusarium concentricum Nirenberg & O' Donnell (Ascomycota: Hypocreales) is a fungal species known to infect plants, but never reported as entomopathogenic. Polychrosis cunninhamiacola Liu et Pei (Lepidoptera: Tortricidae: Olethreutinae) is a major and widespread insect pest causing economic losses to cultivated Chinese fir Cunninghamia lanceolata (Lamb.) Hook. It is routinely controlled by extensive use of chemical insecticides, which is perceived as environmentally unsustainable. During March and April of 2019-2020, muscardine cadavers of larvae and pupae of P. cunninhamiacola infected with growing fungus were collected in a fir forest in northern Guangdong Province, China. Conidia were isolated and cultured on PDA medium, from which the fungal strain was identified as F. concentricum FCPC-L01 by morphology and by sequence alignment match with Tef-1α gene. Pathogenicity bioassays at the conidial concentration 1 × 107 revealed P. cunninhamiacola adults and Danaus chrysippus (L.) (Lepidoptera: Nymphalidae) larvae are sensitive to the fungal infection, but not the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). We believe results indicate this fungal strain might be applicable against specific target insect pests. As this is the first record of a natural infection caused by F. concentricum in insects, we propose host specificity tests should be done to evaluate its potential as a biocontrol agent.


Assuntos
Formigas , Fusarium , Hypocreales , Mariposas , Animais , Controle Biológico de Vetores/métodos , Insetos , Larva , Esporos Fúngicos
5.
J Org Chem ; 88(7): 4334-4344, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36922910

RESUMO

An inexpensive electrochemical induction system was used for the efficient reductive defunctionalization of sulfoximines through a radical pathway. This practical and robust strategy could be used for the removal of the S═N bond-directing group from various sulfoximines. The practicability of this method was demonstrated by its mild conditions, simple operation, one-pot procedure, gram-scale synthesis, and the undivided cell. Furthermore, preliminary mechanistic studies suggested that the reaction might proceed via a homocoupling reaction and a denitrification procedure.

6.
J Org Chem ; 88(4): 2322-2333, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36701768

RESUMO

An efficient and practical SO2 insertion protocol of NH-sulfoximines with aryldiazonium tetrafluoroborates and DABSO toward N-sulfonyl sulfoximines has been developed under mildly basic conditions. This transformation features easy operation, readily available substrates, and mild conditions. A tentative mechanism is proposed, which indicates that the aryldiazonium tetrafluoroborates would be radical donors under standard reaction conditions. The aryl radical produced in situ from diazonium salts would be trapped by SO2 to generate an arylsulfonyl radical and then undergo further transformation to generate the final N-sulfonyl sulfoximines.

7.
Environ Entomol ; 50(1): 160-166, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33381806

RESUMO

Seven entomopathogenic fungi strains (M1-7) were isolated from field-obtained dead coconut hispine beetles Brontispa longissima (Gestro), identified to species, and bioassayed for their pathogenicity. According to ITS sequences, all isolates belong in the genus Metarhizium, mainly M. flavoviride and M. anisopliae. Measured median lethal times (LT50) of 1×107 conidia/ml of M1-7 against fourth-instar B. longissima larvae within 15 d following exposure were, respectively: 5.43, 10.64, 11.26, 10.93, 6.62, 4.73, and 5.95 d. The isolate M6 yielded the highest mortality to fourth-instar larvae, and was thus selected to be tested against other larval instars and adults of B. longissima, after Time-Dose-Mortality (TDM) models. M6 proved more pathogenic against larvae than adults. The obtained bioassays data produced a good fit to the TDM models, yielding estimated LC50 and LT50 for each of the tested developmental stages of B. longissima. Both the obtained dose (ß) and time effect (ri) parameters from TDM models suggest that first-instar larvae are the most susceptible life stage of the pest insect, while adults are more resistant to M6 infection. Calculated LC50 values were, respectively, 1.23×103 and 1.15×106 conidia/ml for first-instar larvae and adults, on the 15th day following M6 inoculation. Estimated LT50 were 3.3 and 5.9 d for first-instar larvae and adults, respectively, at 1×108 conidia/ml. Taken together, these results would suggest Metarhizium M6 as an option for the biological control of B. longissima in the field.


Assuntos
Besouros , Metarhizium , Animais , Larva , Controle Biológico de Vetores
8.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725158

RESUMO

The removal of corpses (aka 'necrophoric behavior') is critical to sanitation in ant colonies. However, little is known about differences in the necrophoric responses of Solenopsis invicta workers towards corpses of nestmates and non-nestmates. We introduced corpses of S. invicta workers from either intracolony (i.e., nestmate) or intercolony (i.e., non-nestmate) origin at the entrance of artificial nests, and recorded workers' aggressive responses and necrophoric behaviors for analysis. Solenopsis invicta workers displayed distinct responses towards corpses of different origins. Specifically, resident workers were more likely to remove fresh non-nestmate corpses than nestmate corpses, but there was no difference regarding corpses that had been dead for 15 min or longer. Resident workers reacted more aggressively to, and removed more quickly, fresh non-nestmate corpses than corpses of their nestmates. On the other hand, there was no significant difference in the removal time between nestmate and non-nestmate corpses that had been dead for 15 min or longer. Resident workers always displayed stronger aggressiveness towards non-nestmate corpses than nestmate corpses, excepting to corpses that had been dead for 6 h, which elicited a response. No significant correlation between the removal times and aggressiveness levels were detected in any treatments. It remains to be tested whether this differential response is adaptive in how it influences colony fitness and competition.


Assuntos
Formigas/fisiologia , Comportamento Animal , Agressão , Animais , Comportamento Social
9.
Environ Entomol ; 48(1): 147-155, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30508198

RESUMO

Entomopathogenic fungi (EPF), such as Metarhizium spp. and Beauveria bassiana, are widely used in the biocontrol of many species of insect pests. Tobacco is an economically important crop in Guangdong Province of China, but insect pests, such as Spodoptera litura Fabricius, are a major threat to production. Here, we tested the persistence of five Metarhizium species and B. bassiana in glasshouse pot and field experiments and assessed their long-term efficacy against S. litura. We found that the colony forming units of these EPF decreased by c. 93% by 180 d in the pot soils declines tended to be exponential. In contrast, declines of c. 99% in field soils were more gradual (linear), occurring throughout the 360 d experiment. Metarhizium anisopliae Ma09 had the longest estimated half-life of 41 d, while that of B. bassiana was the shortest (9 d). Fungal density in the upper soil layer (0-5 cm) decreased rapidly and was undetectable after 150 d, whereas density was consistently greatest in the mid-layer (10-15 cm). At 180 d after inoculation, strain Ma09 elicited highest rates of mortality in S. litura. We conclude that soils in Guangdong Province are all suitable for the use of Metarhizium as a biocontrol agent, where M. anisopliae Ma09 offers greatest residual activity.


Assuntos
Beauveria/fisiologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Microbiologia do Solo , Spodoptera , Animais , China , Pupa , Esporos Fúngicos/fisiologia , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...