Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 39(7): 918-928, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843381

RESUMO

Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.


We conducted a comprehensive genome-wide cross-trait analysis to investigate the shared genetic basis and causal relationship underlying smoking and osteoporosis. Our findings revealed that smoking and eBMD are inherently linked through biological pleiotropy. Importantly, our study discovered that quitting smoking significantly reduced the risk of lower eBMD. We recommend individuals to avoid, reduce, or quit smoking as early as possible to protect bone health.


Assuntos
Densidade Óssea , Estudo de Associação Genômica Ampla , Fumar , Humanos , Densidade Óssea/genética , Fumar/genética , Fumar/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Osteoporose/genética , Abandono do Hábito de Fumar , Polimorfismo de Nucleotídeo Único , Osso e Ossos/metabolismo
2.
J Bone Miner Res ; 38(11): 1635-1644, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615194

RESUMO

Although the impact of sex hormones on bone metabolism is well-documented, effect of their primary modulator, sex hormone-binding globulin (SHBG), remains inconclusive. This study aims to elucidate the genetic overlap between SHBG and heel estimated bone mineral density (eBMD), a widely-accepted tool for osteoporosis management and fracture risk assessment. Using summary statistics from large-scale genomewide association studies conducted for SHBG (N = 370,125), SHBG adjusted for body mass index (SHBGa, N = 368,929), and eBMD (N = 426,824), a comprehensive genomewide cross-trait approach was performed to quantify global and local genetic correlations, identify pleiotropic loci, and infer causal associations. A significant overall inverse genetic correlation was found for SHBG and eBMD (rg = -0.11, p = 3.34 × 10-10 ), which was further supported by the significant local genetic correlations observed in 11 genomic regions. Cross-trait meta-analysis revealed 219 shared loci, of which seven were novel. Notably, four novel loci (rs6542680, rs8178616, rs147110934, and rs815625) were further demonstrated to colocalize. Mendelian randomization identified a robust causal effect of SHBG on eBMD (beta = -0.22, p = 3.04 × 10-13 ), with comparable effect sizes observed in both men (beta = -0.16, p = 1.99 × 10-6 ) and women (beta = -0.19, p = 2.73 × 10-9 ). Replacing SHBG with SHBGa, the observed genetic correlations, pleiotropic loci and causal associations did not change substantially. Our work reveals a shared genetic basis between SHBG and eBMD, substantiated by multiple pleiotropic loci and a robust causal relationship. Although SHBG has been implicated in preventing and screening aging-related diseases, our findings support its etiological role in osteoporosis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Densidade Óssea , Osteoporose , Feminino , Humanos , Masculino , Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Minerais/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Fenótipo , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA