Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 31(1): 106-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37350038

RESUMO

High fecundity is a common characteristic of insect pests which increases the difficulty of population control. Serine/threonine kinase Akt is an indispensable component of the insulin signaling pathway. Silencing of LsAkt severely hinders reproduction in Lasioderma serricorne, a stored product insect pest. However, the post-transcriptional pathway of LsAkt in L. serricorne remains unknown. This study identified 2 binding sites of miR-9c-5p and novel-mir50 in the coding sequences of LsAkt. The expression profiles of 2 microRNAs (miRNAs) and LsAkt displayed an opposite pattern during the adult stages. Luciferase reporter assay showed that novel-mir50 and miR-9c-5p could downregulate the expression of LsAkt. Overexpression of miR-9c-5p and novel-mir50 by injection of mimics inhibited the expression of LsAkt and reduced oviposition, decreased egg hatchability, and blocked ovarian development. It also decreased the expression of genes involved in ovarian development (LsVg and LsVgR) and the nutritional signaling pathway (LsTOR, LsS6K, and Ls4EBP), and reduced the phosphorylation of Akt. Conversely, injection of miR-9c-5p and novel-mir50 inhibitors induced the expressions of LsAkt, LsVg, LsVgR, LsTOR, LsS6K, and Ls4EBP, enhanced Akt phosphorylation level, and accelerated ovarian development. Injection of bovine insulin downregulated the expression of miR-9c-5p and novel-mir50 and upregulated the LsAkt expression. It also rescued the reproductive development defects associated with miR-9c-5p/novel-mir50 overexpression, forming a positive regulatory loop of insulin signaling. These results indicate that miR-9c-5p/novel-mir50 regulates the female reproduction of L. serricorne by targeting Akt in response to insulin signaling. The data also demonstrate the effects of the insulin/miRNA/Akt regulatory axis in insect reproduction.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Bovinos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Insulina , Reprodução
4.
Biomed Res Int ; 2021: 6630598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778073

RESUMO

OBJECTIVE: Although increasing evidence reveals the efficacy of traditional Chinese medicine (TCM) and its safety on Tourette Syndrome (TS) patients, whether TCM is indeed improving TS remains unclear. The purpose of the current study is to perform a meta-analysis to evaluate the efficacy and safety of TCM on treating TS patients. METHOD: An elaborate search strategy was conducted based on several databases including Medline, Embase, Cochrane, Web of Science, CINAHL, CBM, VIP, CNKI, and Wanfang Data in order to identify the relevant randomized controlled trials (RCTs) from their inception to as late as May 1st, 2020. General information and data needing analysis were extracted simultaneously for the necessity of various analyses such as descriptive analysis and metaquantitative analysis. RESULTS: Forty-seven trials with 5437 TS patients in total were eventually included according to our criteria. All trials were conducted in China, and the publication years ranged from 2004 to 2017. In terms of clinical efficacy, clinical symptoms of patients with TCM were more likely to be improved compared with the control group (odds ratio, OR = -1.29, 95% confidence interval, CI: -2.54 to -0.06, I 2 = 0.00%). As to the outcome of recurrence rate, the pooled results revealed that the TCM group was more inclined to stabilize the recurrence (OR = 0.44, 95% CI: 0.24 to 0.78, I 2 = 0.00%). Similar results were observed in adverse reaction (OR = 0.32, 95% CI: 0.24 to 0.43, I 2 = 32.90%). CONCLUSION: The results of our study recommend applying TCM to treat TS patients for better efficacy and safety. Results need to be interpreted cautiously due to certain limitations in our study.


Assuntos
Medicina Tradicional Chinesa , Síndrome de Tourette/terapia , China , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Sci Bull (Beijing) ; 66(9): 937-946, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654241

RESUMO

Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASD), in the hippocampus (DG and CA1-4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs (sgRNAs) targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions, and defective social reward behaviors. Furthermore, some aspects of ASD and RTT, such as stereotypic behaviors, did not appear in the MECP2 gene-edited monkeys, suggesting that different brain areas likely contribute to distinct ASD symptoms. This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates, paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.

6.
Chem Asian J ; 15(21): 3568-3574, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929867

RESUMO

Developing high-performance catalysts for oxygen evolution reaction (OER) is critical for the widespread applications of clean and sustainable energy through electrochemical devices such as zinc-air batteries and (photo)electrochemical water splitting. Constructing heterostructure and oxygen vacancies have demonstrated great promises to boost the OER performance. Herein, we report a facile strategy to fabricate hetero-structured NiFe2 O4 /Ni3 S4 nanorods, where NiFe2 O4 can be derived from Fe-based metal-organic frameworks (MOFs). The NiFe2 O4 /Ni3 S4 catalyst exhibited excellent OER performance, evidenced by an overpotential value of 357 mV at the current density of 20 mA cm-2 , and a small Tafel slope of 87.46 mV dec-1 in 1 M KOH, superior to the benchmark IrO2 catalyst. Moreover, NiFe2 O4 /Ni3 S4 outperformed with regard to long-term durability for OER than IrO2 . Such outstanding OER performance is mainly accounted by the interface between NiFe2 O4 and Ni3 S4 , and the presence of rich oxygen vacancies. When employed as air-cathode in zinc-air batteries, the NiFe2 O4 /Ni3 S4 decorated battery had a high round-trip efficiency of 62.1% at 10 h, and possessed long-term stability of >50 h. This study may pave the way for fabricating non-noble-metal-based cost-effective, efficient and durable electrocatalysts for OER, zinc-air batteries, and beyond.

7.
ACS Appl Mater Interfaces ; 12(29): 32556-32565, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32648729

RESUMO

Vapor generation using solar energy is emerging as an efficient technology for wastewater purification and seawater desalination to relieve global water crisis. However, salt deposition on the evaporation surface seriously impairs the long-term steady water evaporation performance. Herein, the flexible salt-rejecting photothermal paper comprising reduced graphene oxide (rGO) and ultralong hydroxyapatite nanowires (HNs) has been developed for high-performance solar energy-driven water evaporation and stable desalination of seawater. The rGO/HN photothermal paper has advantages such as the hierarchical porous structure, interconnected channels, high mechanical strength, high efficiencies of solar light absorption and photothermal conversion, fast water transportation, and good heat insulation and salt-rejecting properties. Furthermore, the hydrophilicity and hydrophobicity of the rGO/HN photothermal paper can be adjusted by regulating the thermal treatment time. The water evaporation rate and energy efficiency of the hydrophilic rGO/HN photothermal paper are 1.48 kg m-2 h-1 and 89.2%, respectively, under 1 sun illumination (1 kW m-2). The hydrophobic rGO/HN photothermal paper shows a long-time stable water evaporation and salt-rejecting performance in the process of seawater desalination. The flexible salt-rejecting rGO/HN photothermal paper can produce clean water from wastewater and seawater with high rejection rates of organic dyes, metal ions, and salt ions, and it is promising for applications in water purification and seawater desalination.

8.
Zool Res ; 41(4): 437-443, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32400976

RESUMO

Sleep is indispensable for human health, with sleep disorders initiating a cascade of negative consequences. As our closest phylogenetic relatives, non-human primates (NHPs) are invaluable for comparative sleep studies and exhibit tremendous potential for improving our understanding of human sleep and related disorders. Previous work on measuring sleep in NHPs has mostly used electroencephalography or videography. In this study, simultaneous videography and actigraphy were applied to observe sleep patterns in 10 cynomolgus monkeys ( Macaca fascicularis) over seven nights (12 h per night). The durations of wake, transitional sleep, and relaxed sleep were scored by analysis of animal behaviors from videography and actigraphy data, using the same behavioral criteria for each state, with findings then compared. Here, results indicated that actigraphy constituted a reliable approach for scoring the state of sleep in monkeys and showed a significant correlation with that scored by videography. Epoch-by-epoch analysis further indicated that actigraphy was more suitable for scoring the state of relaxed sleep, correctly identifying 97.57% of relaxed sleep in comparison with video analysis. Only 34 epochs (0.13%) and 611 epochs (2.30%) were differently interpreted as wake and transitional sleep compared with videography analysis. The present study validated the behavioral criteria and actigraphy methodology for scoring sleep, which can be considered as a useful and a complementary technique to electroencephalography and/or videography analysis for sleep studies in NHPs.


Assuntos
Haplorrinos/fisiologia , Sono , Gravação em Vídeo/métodos , Actigrafia/métodos , Actigrafia/veterinária , Animais
9.
Chem Asian J ; 15(9): 1456-1463, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157820

RESUMO

Binary transition metal selenides have been more promising than single transition metal selenides as anode materials for sodium-ion batteries (SIBs). However, the controlled synthesis of transition metal selenides, especially those derived from metal-organic-frameworks with well-controlled structure and morphology is still challenging. In this paper, highly porous NiCoSe4 @NC composite microspheres were synthesized by simultaneous carbonization and selenization of a Ni-Co-based metal-organic framework (NiCo-MOF) and characterized by scanning electron microscopy, transition electron microscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical techniques. The rationally engineered NiCoSe4 @NC composite exhibits a capacity of 325 mAh g-1 at a current density of 1 A g-1 , and 277.8 mAh g-1 at 10 A g-1 . Most importantly, the NiCoSe4 @NC retains a capacity of 293 mAh g-1 at 1 A g-1 after 1500 cycles, with a capacity decay rate of 0.025 % per cycle.

10.
Nanoscale ; 12(12): 6717-6728, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32163069

RESUMO

Solar energy-driven interfacial water evaporation is a promising energy utilization technology in the field of seawater desalination and water purification. However, the accumulation of salt on the heating surface severely impairs the water evaporation performance and long-time stability. Herein, we demonstrate a new kind of photothermal paper comprising a high-temperature-resistant paper made from ultralong hydroxyapatite nanowires and glass fibers and black nickel oxide (NiO) nanoparticles for solar energy-driven desalination. Owing to the high photothermal conversion ability, fast water transportation in the air-laid paper, and good heat insulation, the hydrophilic HN/NiO photothermal paper can achieve efficient, stable and recyclable water evaporation performance. In addition, a Janus HN/NiO photothermal paper based on hydrophobic sodium oleate-modified ultralong hydroxyapatite nanowires has been developed, and it has a high water evaporation efficiency of 83.5% under 1 kW m-2 irradiation. In particular, with the bottom hydrophobic ultralong hydroxyapatite nanowire layer and water-transporting channels in the air-laid paper to facilitate salt exchange, the as-prepared Janus evaporator exhibits no salt accumulation on the surface, high performance and long-time stable desalination using simulated seawater (3.5 wt% NaCl). Furthermore, the Janus evaporator with the hydrophobic ultralong hydroxyapatite nanowire substrate can be extended to support other photothermal materials such as black titanium oxide (Ti2O3) and Ketjen black carbon. The as-prepared Janus HN/Ti2O3 and Janus HN/KB photothermal paper also exhibit salt-resistant desalination function. The as-prepared Janus salt-resistant photothermal paper with efficient, stable and recyclable merits has great potential in solar energy-driven desalination and water purification.

11.
ACS Appl Mater Interfaces ; 12(1): 1339-1347, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31880902

RESUMO

The direct transformation of external energy into mechanical work by the self-propelled motor inspires and promotes the development of miniaturized machines. Several strategies have been utilized to realize the self-driven motion, but in some cases multiple power sources are needed, and this would complicate the operation in diverse environments. In this regard, the dual-mode self-propelled system based on a single power source is highly desirable. In this work, single-light-actuated dual-mode propulsion at the liquid/air interface is realized by using flexible, superhydrophobic, and thermostable photothermal paper made from flexible ultralong hydroxyapatite nanowires, titanium sesquioxide (Ti2O3) particles, and poly(dimethylsiloxane) coating. The superhydrophobic surface enables the thermostable photothermal paper to float on the water surface spontaneously and significantly reduces the drag force. In the usual situation, the heat power produced by the photothermal effect is utilized to trigger the Marangoni propulsion. While the Marangoni effect is quenched in water containing the surfactant, the propulsion mode can be directly switched into the vapor-enabled propulsion mode by simply increasing the light power density. Particularly, the light-driven motion in a linear, curvilinear, or rotational manner can be realized by designing the self-propelled machines with appropriate shapes by using the processable photothermal paper. It is expected that the as-prepared dual-mode self-propelled, flexible, superhydrophobic, and thermostable photothermal paper-based devices have promising applications in various fields such as microrobots, biomedicine, and environmental monitoring.

12.
Chemistry ; 25(46): 10918-10925, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31211454

RESUMO

Security inks based on photoluminescent materials are mostly investigated for security applications, such as information encryption and decryption, anti-counterfeiting, and data storage. Although they are invisible to the naked eye under ambient light, they can be detected under ultraviolet or near-infrared light. Herein, a new kind of secret paper made from network-structured ultralong hydroxyapatite nanowires and cellulose fibers has been developed. White vinegar, a common cooking ingredient, is used as an invisible security ink. Covert information on the secret paper written with white vinegar is totally invisible under natural light, but it can be decrypted and clearly read after exposure to fire; the response time to fire is short (<10 s). The ways of writing on the secret paper are diverse by using various pens loaded with white vinegar.

13.
ChemSusChem ; 12(4): 898-907, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30600932

RESUMO

Graphitic carbon nitride (g-C3 N4 ) has been widely explored as a photocatalyst for water splitting. The anodic water oxidation reaction (WOR) remains a major obstacle for such processes, with issues such as low surface area of g-C3 N4 , poor light absorption, and low charge-transfer efficiency. In this work, such longtime concerns have been partially addressed with band gap and surface engineering of nanostructured graphitic carbon nitride (g-C3 N4 ). Specifically, surface area and charge-transfer efficiency are significantly enhanced through architecting g-C3 N4 on nanorod TiO2 to avoid aggregation of layered g-C3 N4 . Moreover, a simple phosphide gas treatment of TiO2 /g-C3 N4 configuration not only narrows the band gap of g-C3 N4 by 0.57 eV shifting it into visible range but also generates in situ a metal phosphide (M=Fe, Cu) water oxidation cocatalyst. This TiO2 /g-C3 N4 /FeP configuration significantly improves charge separation and transfer capability. As a result, our non-noble-metal photoelectrochemical system yields outstanding visible light (>420 nm) photocurrent: approximately 0.3 mA cm-2 at 1.23 V and 1.1 mA cm-2 at 2.0 V versus RHE, which is the highest for a g-C3 N4 -based photoanode. It is expected that the TiO2 /g-C3 N4 /FeP configuration synthesized by a simple phosphide gas treatment will provide new insight for producing robust g-C3 N4 for water oxidation.

14.
Dalton Trans ; 48(3): 928-935, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30565614

RESUMO

Tubular hematite with high-concentration, uniform doping is regarded as a promising material for photoelectrochemical water oxidation. However, the high-temperature annealing commonly used for activating doped hematite inevitably causes deformation of the tubular structure and an increase in the trap states. In the present work, Sn-doped tubular hematite on fluorine-doped tin oxide (FTO) is successfully obtained at 750 °C from a Sn-coated FeOOH tube precursor. Sn/P codoping, which is rarely considered for hematite, is also achieved via a gas phase reaction in phosphide atmosphere. The tubular morphology allows the dopant to diffuse from both the inner and outer surfaces, thus decreasing the doping profile in the radial direction. The even distribution of Sn and P synergetically increases the carrier density of hematite by one order of magnitude, which shortens the width of the depletion layer to ca. 2.3 nm (compared with 19.3 nm for the pristine sample) and leads to prolonged carrier lifetime and efficient charge separation. In addition, this codoping protocol does not introduce additional surface trap states, as evidenced by the increased charge injection efficiency and surface kinetic analysis using intensity modulated photocurrent spectroscopy (IMPS). As a result, the morphology- and doping-engineered hematite exhibits photocurrents of 0.9 mA cm-2 at 1.23 V and 3.8 mA cm-2 at 2.0 V vs. RHE under AM 1.5 G illumination (100 mW cm-2) in 1.0 M NaOH, representing 4.5-fold and 4.8-fold enhancements, respectively, compared with the photocurrents of undoped hematite. The present method is shown to be effective for preparing multi-element-doped hematite nanotubes and may find broad application in the development of other nanotubular photoelectrodes with or without doping for efficient and robust water oxidation.

15.
ACS Nano ; 12(12): 12284-12295, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30475582

RESUMO

A variety of biological materials in natural organisms supply a rich source of structural design guidelines and inspirations for the construction of advanced structural materials with excellent mechanical properties. In this work, inspired by the natural nacre and human bone, a kind of flexible macroscopic ribbon fiber made from highly ordered alignment of ultralong hydroxyapatite (HAP) nanowires and sodium polyacrylate (PAAS) with a "brick-and-mortar" layered structure has been developed by a scalable and convenient wet-spinning method. The quasi-long-range orderly liquid crystal of one-dimensional ultralong hydroxyapatite nanowires is employed and spun into the continuous flexible macroscopic ribbon fiber. In this work, highly ordered ultralong HAP nanowires act as the hard "brick" and PAAS acts as the soft "mortar", and the nacre-mimetic layered architecture is obtained. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber exhibits superior mechanical properties, and the maximum tensile strength and Young's modulus are as high as 203.58 ± 45.38 MPa and 24.56 ± 5.35 GPa, respectively. In addition, benefiting from the excellent flexibility and good knittability, the as-prepared macroscopic HAP/PAAS ribbon fiber can be woven into various flexible macroscopic architectures. Additionally, the as-prepared flexible macroscopic HAP/PAAS ribbon fiber can be further functionalized by incorporation of various functional components, such as magnetic and photoluminescent constituents. The as-prepared flexible macroscopic HAP/PAAS ribbon fiber has potential applications in various fields such as smart wearable devices, optical devices, magnetic devices, and biomedical engineering.

16.
Small ; 14(50): e1803387, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370652

RESUMO

Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.

17.
Dalton Trans ; 47(41): 14566-14572, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30259045

RESUMO

Developing high surface area nanostructured electrodes with fast charge separation is one of the main challenges for exploring cupric oxide (CuO)-based photocathodes in solar-driven hydrogen production applications. Herein, brand new 1D branched CuO nanowire arrays have been achieved on fluorine-doped tin oxide-coated glass (FTO) through a two-step wet chemical redox reaction. X-ray diffraction patterns, Raman spectra and X-ray photoelectron spectroscopy confirm the pure phase characteristic of the resulting branched CuO. In addition to the enlarged surface area of this advanced functional structure as compared with that of the 1D wire trunk, the charge injection and separation have been improved by rationally controlling the density of defects and size of branches. As a result, the optimized branched CuO exhibits photocurrent as high as 3.6 mA·cm-2 under AM 1.5G (100 mW·cm-2) illumination and 3.0 mA·cm-2 under visible light (λ > 420 nm) at 0.2 V vs. RHE in 0.5 M Na2SO4, which are 2.8- and 3.0-fold greater than those of 1D wire samples, respectively. In addition, the solution-processed approach established herein seems quite favourable for large-scale and low-cost manufacturing.

18.
ChemSusChem ; 10(13): 2796-2804, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28570775

RESUMO

Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe2 O3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm-2 ), a maximal photocurrent of 1.0 mA cm-2 is achieved with ZnO/Fe2 O3 core-shell NWs and 2.3 mA cm-2 was achieved for the PH3 -treated NWs at 1.23 V versus RHE. The PH3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe2 PO5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material.


Assuntos
Compostos de Ferro/química , Nanofios/química , Fosfatos/química , Processos Fotoquímicos , Água/química , Óxido de Zinco/química , Cápsulas , Catálise , Eletroquímica , Oxirredução , Temperatura
19.
Zool Res ; 38(2): 88-95, 2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28409504

RESUMO

Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca2+/calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.


Assuntos
Adenoviridae/fisiologia , Encéfalo/virologia , Lentivirus/fisiologia , Macaca mulatta/virologia , Transfecção/veterinária , Adenoviridae/genética , Animais , Engenharia Genética , Vetores Genéticos , Humanos , Lentivirus/genética , Masculino , Transfecção/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...