Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 681: 55-61, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757667

RESUMO

Gelsemium elegans (G.elegans) is a plant of the Loganiaceae family, known for its indole alkaloids, including gelsemine, koumine, and gelsenicine. Gelsemine and koumine are well-studied active alkaloids with low toxicity, valued for their anti-anxiety and analgesic properties. However, gelsenicine, another important alkaloid, remains underexplored due to its high toxicity. This study focuses on evaluating the analgesic properties of gelsenicine and comparing them with gelsemine and koumine. The results indicate that all three alkaloids exhibit robust analgesic properties, with gelsemine, koumine, and gelsenicine showing ED50 values of 0.82 mg/kg, 0.60 mg/kg, and 8.43 µg/kg, respectively, as assessed by the hot plate method. Notably, the therapeutic dose of gelsenicine was significantly lower than its toxic dose (LD50 = 0.185 mg/kg). The study also investigated the mechanism of action by analyzing the expression levels of GlyRα3 and Gephyrin. The PGE2 model group showed decreased expression levels of GlyRα3 and Gephyrin, while groups treated with gelsemine, koumine, and gelsenicine were able to reverse this decrease. These results suggest that gelsenicine effectively alleviates PGE2-induced hyperalgesia by upregulating the expression of GlyRα3 and Gephyrin, which are key targets of the Gly receptor pathway.

2.
Rapid Commun Mass Spectrom ; 36(12): e9302, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35344234

RESUMO

RATIONALE: Rankinidine belongs to the humantenine-type alkaloids isolated from Gelsemium. Currently, the mechanism behind the toxicity differences of rankinidine has not been explained. In this study, our purpose was to elucidate the major in vitro metabolic pathways of rankinidine and to compare the formation of metabolites of rankinidine in human (HLMs), rat (RLMs), goat (GLMs) and pig (PLMs) liver microsomes. METHODS: This is the first study to compare the in vitro metabolism of rankinidine with high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF). The MS/MS data and LC/MS peak area acquired in positive ion mode were used to analyze metabolite structures and compare metabolism. RESULTS: We identified 11 metabolites (M1-M11) in total and found five main metabolic pathways, consisting of demethylation (M1), reduction (M2), oxidation at different positions (M3-M5), oxidation and reduction (M6-M10) and demethylation and oxidation (M11). The metabolism of rankinidine has qualitative and quantitative species-specific differences in vitro. In PLMs and GLMs, the main metabolic pathway of rankinidine was oxidation. Notably, among the four species, the oxidation ability of rankinidine was highest in pigs and goats, and the demethylation and reduction abilities of rankinidine were highest in humans and rats. CONCLUSIONS: The interspecific metabolic differences of rankinidine in HLMs, PLMs, GLMs and RLMs were compared and studied for the first time using LC/QTOF. These findings will certainly support future studies of rankinidine metabolism in vivo and will contribute to elucidating the cause of species-specific differences behind Gelsemium toxicity.


Assuntos
Alcaloides , Antineoplásicos , Gelsemium , Alcaloides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Indóis , Microssomos Hepáticos/metabolismo , Ratos , Suínos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA