Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724994

RESUMO

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Assuntos
Cinnamomum zeylanicum , Escherichia coli , Óleos Voláteis , Animais , Óleos Voláteis/farmacocinética , Óleos Voláteis/administração & dosagem , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Suínos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Salmonella/efeitos dos fármacos , Satureja/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/química , Masculino , Centrifugação
2.
Pharmaceutics ; 14(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145677

RESUMO

The clinical use of nonsteroidal anti-inflammatory drugs is limited by their poor water solubility, unstable absorption, and low bioavailability. Solid lipid nanoparticles (SLNs) exhibit high biocompatibility and the ability to improve the bioavailability of drugs with low water solubility. Therefore, in this study, a tolfenamic acid solid lipid nanoparticle (TA-SLN) suspension was prepared by a hot melt-emulsification ultrasonication method to improve the sustained release and bioavailability of TA. The encapsulation efficiency (EE), loading capacity (LC), particle size, polydispersity index (PDI), and zeta potential of the TA-SLN suspension were 82.50 ± 0.63%, 25.13 ± 0.28%, 492 ± 6.51 nm, 0.309 ± 0.02 and -21.7 ± 0.51 mV, respectively. The TA-SLN suspension was characterized by dynamic light scattering (DLS), fluorescence microscopy (FM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) spectroscopy. The TA-SLN suspension showed improved sustained drug release in vitro compared with the commercially available TA injection. After intramuscular administration to pigs (4 mg/kg), the TA-SLN suspension displayed increases in the pharmacokinetic parameters Tmax, T1/2, and MRT0-∞ by 4.39-, 3.78-, and 3.78-fold, respectively, compared with TA injection, and showed a relative bioavailability of 185.33%. Thus, this prepared solid lipid nanosuspension is a promising new formulation.

3.
J Environ Manage ; 280: 111682, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243625

RESUMO

The purpose of this study was to investigate the influence of substrates (quartz sand and coke) on the removal of pollutants (COD, NH4+-N and TP), electrochemical characteristics and microbial communities of vertical flow constructed wetlands (VFCW) under high pollutant loads. During operation, the removal rates of COD, NH4+-N and TP by VFCW-C (coke as substrate) were higher than that of VFCW-Q (quartz sand as substrate) by 9.73-19.41%, 5.03%-13.15% and 8.83%-14.58%, respectively. And the resistances of the VFCW-Q and VFCW-C were increased by 1228.9 Ω and 38.3 Ω, while their potentials were dropped from 182.4 mV to 377.9 mV-85.6 mV and 222.0 mV, respectively. The dominant bacteria at the bottoms of VFCW-Q and VFCW-C were individually aerobic denitrifying bacteria (ADNB; 14.98%)/ammonia oxidizing bacteria (AOB; 5.73%) and organics aerobic degrading bacteria (OADB; 12.48%)/ammonia oxidizing bacteria (AOB; 7.24%), while the predominant bacteria at their tops were separately ADNB (11.36%)/OADB (10.52%)/AOB (4.69%) and ADNB (15.09%)/AOB (8.86%) and OADB (3.20%) The removal of pollutants by VFCW-Q and VFCW-C may be mainly attributed to substrate adsorption and microbial degradation.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrogênio/análise , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA