Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29124041

RESUMO

Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Fluoruracila/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosite/metabolismo , Mucosite/microbiologia , Animais , Antígenos CD/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Peso Corporal/efeitos dos fármacos , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Colo/metabolismo , Colo/patologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Imuno-Histoquímica , Inflamação/complicações , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucosite/induzido quimicamente , Mucosite/patologia , NF-kappa B/metabolismo , RNA Ribossômico 16S/genética , Receptores de Superfície Celular/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
2.
Sci Rep ; 6: 30190, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444146

RESUMO

Obesity is a worldwide threat to public health in modern society, which may result from leptin resistance and disorder of thermogenesis. The present study investigated whether astragaloside IV (ASI) could prevent obesity in high-fat diet (HFD)-fed and db/db mice. In HFD-fed mice, ASI prevented body weight gain, lowered serum triglyceride and total cholesterol levels, mitigated liver lipid accumulation, reduced fat tissues and decreased the enlargement of adipose cells. In metabolic chambers, ASI lessened appetite of the mice, decreased their respiratory exchange ratio and elevated VCO2 and VO2 without altering circadian motor activity. Moreover, ASI modulated thermogenesis associated gene expressions in liver and brawn fat tissues, as well as leptin resistance evidenced by altered expressions of leptin, leptin receptor (ObR) or appetite associated genes. In SH-SY5Y cells, ASI enhanced leptin signaling transduction. However, in db/db mice, ASI did not change body weight gain and appetite associated genes. But it decreased serum triglyceride and total cholesterol levels as well as liver triglyceride. Meanwhile, it significantly modulated gene expressions of PPARα, PGC1-α, UCP2, ACC, SCD1, LPL, AP2, CD36 and SREBP-1c. Collectively, our study suggested that ASI could efficiently improve lipid metabolism in obese mice probably through enhancing leptin sensitivity and modulating thermogenic network.


Assuntos
Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Saponinas/farmacologia , Termogênese/efeitos dos fármacos , Triterpenos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
3.
Zhongguo Zhong Yao Za Zhi ; 41(8): 1498-1503, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28884546

RESUMO

To investigate the inhibitory effect and mechanism of vina-ginsenoside R7 (R7) on the activation of rat C6 astrocytes cells induced by LPS/TNF-α, cells in logarithmic growth phase were cultured in DMEM medium without FBS for 24 h. After dissociated using 0.25% EDTA-trypsin, the cells were seeded into respective plates at the density of 1.5×106 cells per mL and cultured overnight. The cells were divided into the following groups: control group (no treatment), model group (treated with LPS 1 µg•mL⁻¹ and TNF-α 10 µg•L⁻¹ treated for 24 h), R7 groups (pre-treated with 6.25, 12.5, 25, 50, and 75 µmol•L⁻¹ R7, 4 µmol•L⁻¹ L-NMMA for 2 h and then stimulated with LPS 1 mg•L⁻¹ and TNF-α 10 µg•L⁻¹ for 24 h). Cell viability was analyzed by CCK-8 kit. Secretion of nitric oxide (NO) in the medium was measured by Greiss method. Concentrations of interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) were assayed by ELISA kits. Gene expressions of inflammatory factors were examined by quantitative-PCR analysis. Activation of NF-κB was detected by dual luciferase reporter gene assay kit. The results showed that R7 could significantly inhibit the secretion of NO from C6 cells in a dose-effect manner, with an IC50 of 34 µmol•L⁻¹. And it could reduce cell proliferation induced by LPS/TNF-α stimulation. Furthermore, R7 at 50 µmol•L⁻¹ significantly down-regulated gene expressions of iNOS (P<0.001), TNF-α (P<0.001), IL-1ß(P<0.05), and COX-2 (P<0.001), but could not change gene expression of IL-6. However, R7 reduced the secretion of TNF-α (P<0.001) and IL-6 (P<0.001). Further studies disclosed that, different concentrations of R7 (25, 50, 100 µmol•L⁻¹) could significantly inhibit the transcription activity of NF-κB(P<0.05, P<0.01, and P<0.001). In conclusion, R7 could inhibit inflammatory responses in C6 cells induced by LPS/TNF-α probably by inhibiting the transcription activity of NF-κB, which indicates its possible therapeutic effect in neurological diseases related to neuroinflammation.


Assuntos
Astrócitos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Animais , Células Cultivadas , Regulação para Baixo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA