Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672500

RESUMO

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Assuntos
Materiais Biocompatíveis , Neuroma , Traumatismos dos Nervos Periféricos , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Neuroma/terapia , Traumatismos dos Nervos Periféricos/terapia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Animais , Regeneração Nervosa , Alicerces Teciduais/química
2.
Biomed Pharmacother ; 170: 116024, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113623

RESUMO

Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Preparações Farmacêuticas , Nervos Periféricos/fisiologia , Sistemas de Liberação de Medicamentos , Substâncias Macromoleculares , Regeneração Nervosa , Nervo Isquiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...