Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 24(6): 1627-32, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24066550

RESUMO

A field experiment was conducted in Zhashui County of Shaanxi Province, Northwest China in 2011 to study the effects of biological organic fertilizer on the microbial community's metabolic activity in a soil planted with chestnut (Castanea mollissima). Three treatments were installed, i. e., control, compound fertilizer, and biological organic fertilizer. Soil samples were collected at harvest, and the metabolic activity was tested by Biolog method. In the treatment of biological organic fertilizer, the average well color development, Shannon evenness, richness, and McIntosh indices of microbial community were all significantly higher than the other two treatments. As compared with the control, applying biological organic fertilizer improved the ability of soil microbes in utilizing the carbon sources of carbohydrates and polymers, while applying compound fertilizer was in opposite. The principal component analysis demonstrated that there was an obvious difference in the soil microbial community among different treatments, mainly depending on the species of carbohydrates and amino acids.


Assuntos
Bactérias/metabolismo , Fagaceae/crescimento & desenvolvimento , Fertilizantes , Microbiologia do Solo , Bactérias/classificação , Carbono/metabolismo , Consórcios Microbianos
2.
Ying Yong Sheng Tai Xue Bao ; 23(3): 798-806, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22720628

RESUMO

This paper studied the metabolism of soil microbes, functions of soil microbial communities, and activities of soil enzymes in a coal mining area of Tongchuan. In the coal mining area, the concentrations of soil Cu, Zn, Cd, and Pb were significantly higher than those in the non-mining area, of which, Cd contributed most to the heavy metals pollution. By adopting Biolog method combining with principal component analysis (PCA) and cluster analysis, it was found that the metabolic characteristics of different soil microbial communities varied significantly with increasing soil heavy metals pollution, and the variation was mainly manifested in the metabolic patterns of carbon sources such as saccharides and amino acids. In slightly and moderately polluted soils, the utilization of carbon sources by soil microbial communities was activated; while in heavily polluted soils, the carbon sources utilization was inhibited. The activities of soil urease, protease, alkaline phosphatase, and catalase all tended to decline with intensifying soil heavy metals pollution. The soil urease, protease, alkaline phosphatase, and catalase activities in the coal mining area were 50.5%-65.1%, 19.1%-57.1%, 87.2%-97.5%, and 77.3%-86.0% higher than those in the non-mining area, respectively. The activities of soil sucrase and cellulase were activated in slightly and moderately polluted soils, but inhibited in heavily polluted soils.


Assuntos
Cobre , Metais Pesados/análise , Mineração , Microbiologia do Solo , Poluentes do Solo/análise , Bactérias/metabolismo , China , Ecossistema , Peptídeo Hidrolases/análise , Sacarase/análise , Urease/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA