Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 32(7): 12636-12644, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571081

RESUMO

Organic photodetectors (OPDs) have attracted increasing attention in the future wearable sensing and real-time health monitoring, due to their intrinsic features including the mechanical flexibility, low-cost processing and cooling-free operations; while their performances are lagging as the results of inferior carrier mobility and small exciton diffusion coefficient of organic molecules. Graphene exhibits the great photoresponse with wide spectral bandwidth and high response speed. However, weak light absorption and the absence of a gain mechanism have limited its photoresponsivity. Here, we report a sensitive organic/inorganic phototransistor with fast response speed by coupling PTCDA organic single crystal with the monolayer graphene. The long range exciton diffusion in highly ordered π-conjugated molecules, efficient exciton dissociation and charge transfer at the PTCDA/graphene heterointerfaces, and the high mobility of graphene enable a high responsivity (8 × 104A/W), short response time (220 µs) and excellent specific detectivity (>1011 Jones), which is higher than the level of commercial on-chip device. This interfacial photogating effect is verified by the high-resolution spatial photocurrent mapping experiment. In addition, the high sensitivity to polarization is clear and the ultrahigh photoconductive gain enables a near-infrared (NIR) response for 980 and 1550 nm. Finally, high-speed visible and NIR imaging applications are successfully demonstrated. This work suggests that high quality organic single crystal/graphene is a promising platform for future high performance optoelectronic systems and imaging applications.

2.
Ann Hematol ; 103(5): 1635-1642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246951

RESUMO

Indolent lymphoma, including chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and follicular lymphoma (FL), can undergo histological transformation into an aggressive subtype, typically diffuse large B-cell lymphoma (DLBCL). The prognosis of transformed lymphoma is poor. In this study, we reported the efficacy and toxicity of a combination of venetoclax, dose-adjusted rituximab or obinutuzumab, etoposide, prednisone, vincristine, doxorubicin, and cyclophosphamide (VR-DA-EPOCH or VG-DA-EPOCH) in 11 patients with biopsy-proven histology transformation into DLBCL, including 8 patients with RT and 3 with transformed FL (tFL). The study was conducted between October 2019 and March 2023 at our single center. The median age of participants at enrolment was 53 years. Six patients (85.7%, 6/7) achieved complete remission (CR) at the end of treatment. The best overall response rate (ORR) and CR rate were both 72.7%, respectively. Two patients received autologous hemopoietic stem cell transplant (ASCT) while two patients received ASCT concurrently with CAR-T therapy for consolidation. With a median follow-up of 13.5 (range, 2.4-29.8) months after enrollment, the median event-free survival, progression-free survival, and overall survival were 9.4, 11.5, and 17.5 months, respectively. Hematologic toxicities of grade ≥3 consisted of neutropenia (90.9%, 10/11), thrombocytopenia (63.6%, 7/11), and febrile neutropenia (54.5%, 6/11). In conclusion, VR-DA-EPOCH or VG-DA-EPOCH was a promising strategy to achieve an early remission, bridging to cellular therapy within this population.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Sulfonamidas , Realidade Virtual , Humanos , Pessoa de Meia-Idade , Prednisona , Vincristina , Etoposídeo , Anticorpos Monoclonais Murinos , Ciclofosfamida , Rituximab , Linfoma não Hodgkin/tratamento farmacológico , Doxorrubicina , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
3.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068109

RESUMO

Organic semiconductor materials featuring lightweight, and flexibility may play a significant role in various future applications, such as foldable displays, wearable devices, and artificial skin. For developing high-performance organic devices, organic crystals are highly desired, while a remaining fundamental issue is their contact problem. Here, we have grown a high-quality rubrene single crystal by utilizing a simple in-air sublimation technique. The contact characteristics (barrier height and contact resistance) are detail-studied by resist-free transfer electrodes (Au metal or graphene/Au). The Schottky barrier of the rubrene/graphene interface is lower and can be also modulated by gate bias, which is confirmed by spatial photocurrent mapping. Finally, we demonstrated the zero-bias photocurrent imaging application by constructing the asymmetrical device employing different electrode contacts. Our work would be of significance for studying the contact issue of organic crystals and wireless imaging.

4.
Opt Express ; 31(20): 33378-33386, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859120

RESUMO

Fiber optic communication is becoming the central pillar of modern high-speed communication technology, which involves the abundant fiber components. Currently, most of photodetectors are fabricated on the silicon chip, so mass fiber-to-chip interfaces increase the complexity of advanced optoelectronic system, and also grow the risk of optical information loss. Here, we report an all-fiber organic phototransistor by employing rubrene single crystal and few-layer graphene to realize the "plug-to-play" operation. The device shows a broadband photoresponse from the ultraviolet to visible range, with fast response times of approximately 130/170 µs and reasonable specific detectivity of 6 × 109 Jones, which is close to the level of commercial on-chip device. Finally, several imaging applications are successfully demonstrated by deploying this all-fiber device. Our work provided an efficient strategy for fabricating all-fiber organic devices, and confirmed their significant potential in future optical fiber optoelectronics.

5.
ACS Appl Mater Interfaces ; 15(41): 48442-48451, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788404

RESUMO

Organic semiconductors herald new opportunities for fabricating high-performance flexible and wearable optoelectronic devices owing to their intrinsic mechanical flexibility, excellent optical absorption, and cool-free operation. The photocurrent generation mechanisms are of multiple physical origins, including photoconductive, photovoltaic, and photogating effects, and the influence of individual effects on the device figures-of-merit is still not well understood. Here we fabricated a high-performance pentacene single-crystal transistor employing graphene electrodes and demonstrated the modulation from the photogating mechanism to the photoconduction effect by controlling gate bias. Control experiments indicate that the calculation based on transfer curves tends to overestimate the responsivity due to nearby trap states. Using a high frequency-modulated light signal to suppress the trapping process, we successfully measured its intrinsic -3 dB bandwidth of 75 kHz. Finally, high-resolution and UV-NIR high-speed imaging capability was demonstrated. Our work provides new guidelines for understanding the photophysical process and intrinsic performances of organic devices and also confirms the potential of organic single crystals in high-speed imaging applications.

7.
Front Oncol ; 13: 1145376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064110

RESUMO

The t(11;14) (q13;q32) translocation resulting in overexpression of cyclin D1 is the major oncogenic mechanism in mantle cell lymphoma (MCL). Most MCLs can be diagnosed based on morphological features, cyclin D1 expression, and IGH/CCND1 rearrangement. However, in some atypical cases where conventional FISH studies fail to detect IGH/CCND1 rearrangement or immunohistochemistry for cyclin D1 is negative, the diagnosis of the disease can be difficult. Hence, next-generation sequencing (NGS) may allow the identification of molecular alterations and assist in the diagnosis of atypical MCL. In this study, we reported a case of a patient diagnosed as asymptomatic MCL who presented with lymphadenopathy during the initial assessment. A lymph node biopsy was performed and the results revealed a high Ki67 index. However, initial diagnosis of aggressive MCL was difficult since the IGH/CCND1 rearrangement result was negative. Ultimately, by the aid of NGS we identified a rare CCND3 rearrangement in the patient, which lead to overexpression of cyclin D3, thereby facilitating the diagnosis of MCL.

8.
J Clin Immunol ; 43(6): 1302-1310, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093406

RESUMO

PURPOSE: To evaluate the role of circulating Epstein-Barr virus (EBV) DNA in lymphoma-associated hemophagocytic lymphohistiocytosis (HLH). METHODS: We conducted a retrospective cohort study to explore the clinical and prognostic significance of EBV DNA in lymphoma-associated HLH. We included adult patients with combined diagnoses of lymphoma and HLH from January 2010 and November 2022 by retrieving the medical record system. RESULTS: A total of 281 patients with lymphoma-associated HLH were identified. Elevated whole-blood EBV DNA was observed in 54.4% (153/281) of patients, and the median copy number was significantly higher in the T/NK-cell malignancies (199,500, interquartile range, 30,000-1,390,000) than that in the B-cell non-Hodgkin lymphoma (5520, interquartile range, 1240-28,400, P < 0.001). The optimum cutoff for predicting survival was 16,100 copies/mL. Compared to the patients with EBV DNA ≤ 16,100 copies/mL, those with EBV DNA > 16,100 copies/mL were younger and had more T/NK-cell malignancies, lower levels of neutrophils and fibrinogen, and higher levels of hemoglobin, alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, and ß2-microglobulin. A higher load of EBV DNA (> 16,100 copies/mL), thrombocytopenia (< 100 × 109/L), neutropenia (< 1 × 109/L), hypofibrinogenemia (≤ 1.5 g/L), and elevated levels of creatinine (> 133 µmol/L) were independent adverse predictors of 60-day overall survival and overall survival. A prognostic index based on EBV DNA and the other four factors was established to categorize the patients into four groups with significantly different outcomes. CONCLUSION: Our study identified high EBV load as a risk factor for lymphoma-associated HLH and established a prognostic index to predict outcomes.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Linfoma , Adulto , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/complicações , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Prognóstico , Estudos Retrospectivos , Relevância Clínica , Linfoma/complicações , Linfoma/diagnóstico , DNA
9.
Yi Chuan ; 45(3): 261-269, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927652

RESUMO

Gaucher's disease is a rare autosomal recessive genetic disease. Due to the decrease or lack of glucocerebrosidase (GBA) activity in lysosome caused by the mutation of GBA gene, its substrate glucocerebroside is detained in lysosome, resulting in clinical manifestations of liver, spleen, kidney, bone, hematopoietic system and even nervous system involvement. Here, we report a case of elderly patient presenting marked multiple bone destruction, with childhood medical history of splenectomy and "osteomyelitis". The patient has a significantly enlarged liver, accompanied by anemia, thrombocytopenia and osteopenia. Laboratory studies show this patient has low blood GBA activity and high glucosyl sphingosine level and increased chitotriosidase activity. Genetic testing revealed a homozygous missense variant NM_001005741.2 c.770A>G (p.Asp257Gly) in the patient's GBA gene. After 6 months of enzyme replacement therapy, the patient's platelets returned to normal, anemia improved, and liver volume decreased. Further detections show that the mother and brothers of the patient have heterozygous mutations at this locus, which is consistent with Mendelian inheritance law. Although this variant has not been reported in literatures or database, both clinical manifestations, characteristics of enzymology and biomarkers, and the effect of enzyme replacement therapy support the diagnosis of Gaucher's disease. The Asp257Gly variant is therefore assessed as a clinical pathogenic variant. This study expands the spectrum of the GBA gene variants. The diagnosis and treatment process of this case also provide reference for the early identification, diagnosis and early treatment of this kind of patients.


Assuntos
Doença de Gaucher , Idoso , Criança , Humanos , Masculino , Doença de Gaucher/genética , Doença de Gaucher/diagnóstico , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/genética , Fígado , Mutação , Mutação de Sentido Incorreto
10.
Clin Exp Med ; 23(6): 2651-2662, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36738306

RESUMO

Chronic lymphocytic leukemia (CLL) is a subtype of B-cell malignancy with high heterogeneity. XPO1 is highly expressed in many hematological malignancies, which predicts poor prognosis. In the study, we aimed to explore the prognostic role of XPO1 and the therapeutic effect of Selinexor, a selective inhibitor of nuclear export, which targets XPO1. We collected 200 CLL samples in our center to confirm XPO1 mRNA expression and analyzed the correlation between XPO1 expression and prognosis. Then, we decreased XPO1 expression with Selinexor to explore the effect of proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines. RNA-Seq was performed to explore potential mechanisms. We analyzed XPO1 expression in a cohort of 150 treatment naive patients and another cohort of 50 relapsed and refractory (R/R) patients and found that XPO1 expression was upregulated in 76% of CLL patients compared with healthy donors. Survival analysis suggested that patients with increased XPO1 expression had inferior treatment-free survival (P = 0.022) and overall survival (P = 0.032). The inhibitor of XPO1, Selinexor, induced apoptosis in primary CLL cells. We showed the effects of Selinexor on proliferation inhibition, cell cycle arrest, and apoptosis in CLL cell lines with JVM3, MEC1, and ibrutinib-resistant (MR) cells via nuclear retention of cargo proteins of IκBα, p65, p50, and FOXO3a. Moreover, downregulation of the NF-κB and FOXO pathways was a common feature of the three CLL cell lines responding to Selinexor, indicating the potential application of XPO1 inhibitor even in the high-risk CLL cells. We identified XPO1 as an unfavorable prognostic factor for CLL patients and provided a rationale for further investigation of the clinically XPO1 targeted therapeutic strategy against CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Carioferinas/genética , Carioferinas/metabolismo , Prognóstico , Triazóis/farmacologia , Triazóis/uso terapêutico , Apoptose , Linhagem Celular Tumoral
11.
Adv Mater ; 35(5): e2206212, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373507

RESUMO

In terms of interlayer trions, electronic excitations in van der Waals heterostructures (vdWHs) can be classified into Type I (i.e., two identical charges in the same layer) and Type II (i.e., two identical charges in the different layers). Type I interlayer trions are investigated theoretically and experimentally. By contrast, Type II interlayer trions remain elusive in vdWHs, due to inadequate free charges, unsuitable band alignment, reduced Coulomb interactions, poor interface quality, etc. Here, the first observation of Type II interlayer trions is reported by exploring band alignments and choosing an atomically thin organic-inorganic system-monolayer WSe2 /bilayer pentacene heterostructure (1L + 2L HS). Both positive and negative Type II interlayer trions are electrically tuned and observed via PL spectroscopy. In particular, Type II interlayer trions exhibit in-plane anisotropic emission, possibly caused by their unique spatial structure and anisotropic charge interactions, which is highly correlated with the transition dipole moment of pentacene. The results pave the way to develop excitonic devices and all-optical circuits using atomically thin organic-inorganic bilayers.

12.
ACS Nano ; 17(1): 530-538, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547249

RESUMO

Hybrid systems have recently attracted increasing attention, which combine the special attributes of each constitute and create interesting functionalities through multiple heterointerface interactions. Here, we design a two-dimensional (2D) hybrid phototransistor utilizing Janus-interface engineering, in which the WSe2 channel combines light-sensitive perovskite and spontaneously polarized ferroelectrics, achieving collective ultrasensitive detection performance. The top perovskite (BA2(MA)3Pb4I13) layer can absorb the light efficiently and provide generous photoexcited holes to WSe2. WSe2 exhibit p-type semiconducting states of different degrees due to the selective light-operated doping effect, which also enables the ultrahigh photocurrent of the device. The bottom ferroelectric (Hf0.5Zr0.5O2) layer dramatically decreases the dark current, which should be attributed to the ferroelectric polarization assisted charge trapping effect and improved gate control. As a whole, our phototransistors show excellent photoelectric performances across the ultraviolet to near-infrared range (360-1050 nm), including an ultrahigh ON/OFF current ratio > 109 and low noise-equivalent power of 1.3 fW/Hz1/2, all of which are highly competitive in 2D semiconductor-based optoelectronic devices. In particular, the devices show excellent weak light detection ability, where the distinguishable photoswitching signal is obtained even under a record-low light intensity down to 1.6 nW/cm2, while showing a high responsivity of 2.3 × 105 A/W and a specific detectivity of 4.1 × 1014 Jones. Our work demonstrates that Janus-interface design makes the upper and lower interfaces complement each other for the joint advancement into high-performance optoelectronic applications, providing a picture to realize the integrated engineering on carrier dynamics by light irradiation, electric field, interfacial trapping, and band alignment.

13.
Adv Sci (Weinh) ; 9(35): e2204332, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285815

RESUMO

Organic materials exhibit efficient light absorption and low-temperature, large-scale processability, and have stimulated enormous research efforts for next-generation optoelectronics. While, high-performance organic devices with fast speed and high responsivity still face intractable challenges, due to their intrinsic limitations including finite carrier mobility and high exciton binding energy. Here an ultrafast and highly sensitive broadband phototransistor is demonstrated by integrating high-quality pentacene single crystal with monolayer graphene. Encouragingly, the -3 dB bandwidth can reach up to 26 kHz, which is a record-speed for such sensitized organic phototransistors. Enormous absorption, long exciton diffusion length of pentacene crystal, and efficient interfacial charge transfer enable a high responsivity of >105  A W-1  and specific detectivity of >1011  Jones. Moreover, self-powered weak-light detection is realized using a simple asymmetric configuration, and the obvious zero-bias photoresponses can be displayed even under 750 nW cm-2  light intensity. Excellent response speed and photoresponsivity enable high-speed image sensor capability in UV-Vis ranges.  The results offer a practical strategy for constructing high-performance self-powered organic hybrid photodetectors, with strong applicability in wireless, weak-light detection, and video-frame-rate imaging applications.

14.
Front Immunol ; 13: 939978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177050

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world with great heterogeneity. Pyroptosis has recently been recognized as an inflammatory form of programmed cell death (PCD) and shares a close relationship with apoptosis. Although the role of apoptosis in CLL was comprehensively studied and successfully applied in clinical treatment, the relationship between pyroptosis genes and CLL remained largely unknown. In this study, eight differentially expressed pyroptosis-related genes (PRGs) were identified between CLL and normal B cells. In order to screen out the prognostic value of differentially expressed PRGs, univariate and multivariate Cox regression analyses were conducted and a risk model with three PRG signatures (GSDME, NLRP3, and PLCG1) was constructed. All CLL samples were stratified into high- and low-risk subgroups according to risk scores. The risk model showed high efficacy in predicting both overall survival (OS) and time to first treatment (TTFT). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) showed the dysregulation of immune and inflammatory response in the high-risk group. Single-sample GSEA (ssGSEA) of immune cell infiltration and the activity of immune-related pathways also displayed decreased antitumor immunity in the high-risk group. In conclusion, PRGs are of prognostic value in CLL and may play important roles in tumor immunity, and the underlying relationship between PRGs and CLL needs to be explored further.


Assuntos
Leucemia Linfocítica Crônica de Células B , Ontologia Genética , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Prognóstico , Piroptose/genética , Microambiente Tumoral/genética
15.
Exp Hematol Oncol ; 11(1): 51, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064433

RESUMO

OBJECTIVE: Circular RNAs (circRNAs) play a critical role in the modulation of tumor metabolism. However, the expression patterns and metabolic function of circRNAs in chronic lymphocytic leukemia (CLL) remain largely unknown. This study aimed to elucidate the role of circRNAs in the lipid metabolism of CLL. METHODS: The expression and metabolic patterns of circRNAs in a cohort of 53 patients with CLL were investigated using whole transcriptome sequencing. Cell viability, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, lipid analysis, Nile red staining as well as triglyceride (TG) assay were used to evaluate the biological function of circRIC8B in CLL. The regulatory mechanisms of circRIC8B/miR-199b-5p/lipoprotein lipase (LPL) axis were explored by luciferase assay, RNA immunoprecipitation (RIP), qRT-PCR, and fluorescence in situ hybridization (FISH). CCK-8 and flow cytometry were used to verify the inhibition role of cholesterol absorption inhibitor, ezetimibe, in CLL cells. RESULTS: Increased circRIC8B expression was positively correlated with advanced progression and poor prognosis. Knockdown of circRIC8B significantly suppressed the proliferation and lipid accumulation of CLL cells. In contrast, the upregulation of circRIC8B exerted opposite effects. Mechanistically, circRIC8B acted as a sponge of miR-199b-5p and prevented it from decreasing the level of LPL mRNA, and this promotes lipid metabolism alteration and facilitates the progression of CLL. What's more, ezetimibe suppressed the expression of LPL mRNA and inhibited the growth of CLL cells. CONCLUSIONS: In this study, the expressional and metabolic patterns of circRNAs in CLL was illustrated for the 1st time. Our findings revealed that circRIC8B regulates the lipid metabolism abnormalities in and development of CLL through the miR-199b-5p/LPL axis. CircRIC8B may serve as a promising prognostic marker and therapeutic target, which enhances the sensitivity to ezetimibe in CLL.

16.
Mol Oncol ; 16(16): 2920-2935, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811334

RESUMO

Ibrutinib exerts promising anticancer effects in chronic lymphocytic leukaemia (CLL). However, acquired resistance occurs during treatment, necessitating the exploration of underlying mechanisms. Although three-dimensional genome organization has been identified as a major player in the development and progression of cancer, including drug resistance, little is known regarding its role in CLL. Therefore, we investigated the molecular mechanisms underlying ibrutinib resistance through multi-omics analysis, including high-throughput chromosome conformation capture (Hi-C) technology. We demonstrated that the therapeutic response to ibrutinib is associated with the expression of p21-activated kinase 1 (PAK1). PAK1, which was up-regulated in CLL and associated with patients' survival, was involved in cell proliferation, glycolysis and oxidative phosphorylation. Furthermore, the PAK1 inhibitor IPA-3 exerted an anti-tumour effect and its combination with ibrutinib exhibited a synergistic effect in ibrutinib-sensitive and -resistant cells. These findings suggest the oncogenic role of PAK1 in CLL progression and drug resistance, highlighting PAK1 as a potential diagnostic marker and therapeutic target in CLL including ibrutinib-resistant CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Cromossomos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinases Ativadas por p21/genética
17.
ACS Appl Mater Interfaces ; 13(48): 57735-57742, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841872

RESUMO

Rubrene single crystals have received a lot of attention for their great potential in electronic and wearable nanoelectronics due to their high carrier mobility and excellent flexibility. While they exhibited remarkable electrical performances, their intrinsic potential as photon detectors has not been fully exploited. Here, we fabricate a sensitive and ultrafast organic phototransistor based on rubrene single crystals. The device covers the ultraviolet to visible range (275-532 nm), and the responsivity and detectivity can reach up to ∼4000 A W-1 and 1011 jones at 532 nm, respectively. Furthermore, the response times are highly gate-tunable down to sub-90 µs, and the cutoff frequency is ∼4 kHz, which is one of the fastest organic material-based phototransistors reported so far. Equally important is that the fabricated device exhibits stable light detection ability even after 8 months, indicating great long-term stability and excellent environmental robustness. The results suggest that the high-quality rubrene single crystal may be a promising material for future flexible optoelectronics with its intrinsic mechanical flexibility.

18.
Transl Oncol ; 14(10): 101176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273750

RESUMO

The 11q deletion (del(11q)) is a conventional cytogenetic aberration observed in chronic lymphocytic leukemia (CLL) patients. However, the prevalence and the prognostic value of del(11q) are still controversial. In this research, we retrospectively explored the prevalence, association, and prognostic significance of del(11q) in 352 untreated and 99 relapsed/refractory Chinese CLL patients. Totally 11.4% of untreated and 19.2% of relapsed/refractory patients harbored del(11q). Del(11q) was more common in patients with ß2-microglobulin > 3.5 mg/L, positive CD38, positive zeta-chain associated protein kinase 70, unmutated immunoglobulin heavy variable-region gene and ataxia telangiectasia mutated mutation. Kaplan-Meier method and univariate Cox regression indicated that del(11q) was an independent prognostic factor for overall survival (OS). Based on the results of univariate Cox regression analysis, two nomograms that included del(11q) were established to predict survival. Desirable area under curve of receiver operating characteristic curves was obtained in the training and validation cohorts. In addition, the calibration curves for the probability of survival showed good agreement between the prediction by nomogram and actual observation. In summary, the prevalence of del(11q) is relatively low in our cohort and del(11q) is an unfavorable prognostic factor for untreated CLL patients. Besides, these two nomograms could be used to accurately predict the prognosis of untreated CLL patients.

19.
J Cancer ; 11(17): 4980-4988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742445

RESUMO

Mantle cell lymphoma (MCL) is a distinct subtype of B cell non-Hodgkin lymphoma. No research has yet documented to investigate the prognostic implications of Epstein-Barr virus (EBV) infection in MCL. The objective of this study was to determine whether EBV DNA load may influence the heterogeneity in the course of the disease in MCL patients. Eighty-eight MCL patients were retrospectively enrolled in the study. EBV DNA load was detected by real-time quantitative PCR for quantification. The univariate and multivariate Cox proportional hazards models were established for the estimation of prognostic factors. Twenty-seven patients were detected positive for EBV DNA and the median virus titer was 1.72×104 copies/mL (range, 8.20×102 to 4.14×105 copies/mL). With a median follow-up of 39 months (range, 9 to 120 months), patients in EBV DNA-positive group displayed unfavorable progression-free survival (PFS) (P=0.012) and overall survival (OS) (P=0.004) than patients in EBV DNA-negative group. Multivariate Cox regression analysis revealed that EBV DNA-positivity was an independent risk factor for both PFS (HR, 2.04; 95% CI, 1.07 to 3.92; P=0.031) and OS (HR, 2.68; 95% CI, 1.20 to 6.00; P=0.016). Reduction in EBV copies was significantly associated with therapy-response. Circulating EBV DNA load in whole blood proved to be a significant predictor of prognosis in patients with MCL, which needs further validation in large-scale clinical studies.

20.
Adv Mater ; 32(27): e1902039, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31282020

RESUMO

Graphene (Gr) has many unique properties including gapless band structure, ultrafast carrier dynamics, high carrier mobility, and flexibility, making it appealing for ultrafast, broadband, and flexible optoelectronics. To overcome its intrinsic limit of low absorption, hybrid structures are exploited to improve the device performance. Particularly, van der Waals heterostructures with different photosensitive materials and photonic structures are very effective for improving photodetection and modulation efficiency. With such hybrid structures, Gr hybrid photodetectors can operate from ultraviolet to terahertz, with significantly improved R (up to 109 A W-1 ) and bandwidth (up to 128 GHz). Furthermore, integration of Gr with silicon (Si) complementary metal-oxide-semiconductor (CMOS) circuits, the human body, and soft tissues is successfully demonstrated, opening promising opportunities for wearable sensors and biomedical electronics. Here, the recent progress in using Gr hybrid structures toward high-performance photodetectors and integrated optoelectronic applications is reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...