Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 183: 108402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150804

RESUMO

Choosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated. After 10 or 60 min of sampling, the physical and biological sampling efficiency and short or long-term sampling capabilities were determined by performing aerodynamic particle size analysis, live microbial culturing, and a qPCR assay. The results showed that AGI-30 and BioSampler impingers have good physical and biological sampling efficiencies for short-term sampling. However, their ability to capture aerosols at low concentrations is restricted. SASS 2300 and BSA-350 wet-wall cyclones had excellent enrichment ratios and high microbial cultivability in both short-term and long-term sampling; however, they were not suitable for quantitative studies of aerosols. Polycarbonate filter samplers showed outstanding performance in physical and long-term sampling but lacked the ability to maintain microbial activity, which can be improved by gelatin filter samplers. However, limitations remain for some fragile microorganisms, such as E. coli phage PhiX174 and coronavirus GX_P2V. In addition, the effects of wind speed and direction should be considered when sampling particles larger than 4 µm. This study provides an improved strategy and guidance for the characterization and selection of a bioaerosol sampler for better measurement and interpretation of collected ambient bioaerosols.


Assuntos
Exposição Ocupacional , Exposição Ocupacional/análise , Escherichia coli , Antibacterianos/análise , Monitoramento Ambiental/métodos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Aerossóis/análise , Tamanho da Partícula
2.
Se Pu ; 41(7): 554-561, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37387276

RESUMO

Hypercrosslinked porous organic polymers (HCPs), a novel type of porous materials synthesized via the Friedel-Crafts reaction, are widely used in gas storage, heterogeneous catalysis, chromatographic separation, and organic pollutant capture. HCPs have the advantages of a wide monomer source, low cost, mild synthesis conditions, and easy functionalization. In recent years, HCPs have shown great application potential in solid phase extraction. Given their high specific surface area, excellent adsorption properties, diverse chemical structures, and easy chemical modification, HCPs have been successfully applied to the extraction of different types of analytes with efficient extraction performance. Based on the chemical structure of HCPs, their target analytes, and the adsorption mechanism, HCPs can be classified as hydrophobic, hydrophilic, and ionic species. Hydrophobic HCPs are usually constructed as extended conjugated structures by overcrosslinking aromatic compounds as monomers. Common monomers include ferrocene, triphenylamine, triphenylphosphine, etc. This type of HCPs shows good adsorption effects on nonpolar analytes such as benzuron herbicides and phthalates through strong π-π and hydrophobic interactions. Hydrophilic HCPs are prepared by introducing polar monomers or crosslinking agents, or by modifying polar functional groups. This type of adsorbent is commonly used to extract polar analytes such as nitroimidazole, chlorophenol, tetracycline, etc. In addition to hydrophobic forces, polar interactions, such as hydrogen-bonding and dipole-dipole interactions, also occur between the adsorbent and analyte. Ionic HCPs are mixed-mode solid phase extraction materials formed by introducing ionic functional groups into the polymer. Mixed-mode adsorbents usually have a dual reversed-phase/ion-exchange retention mechanism, which helps control the retention behavior of the adsorbent by adjusting the elution strength of the eluting solvent. In addition, the extraction mode can be switched by controlling the pH of the sample solution and eluting solvent. In this manner, matrix interferences can be removed while the target analytes are enriched. Ionic HCPs present a unique advantage in the extraction of acid-base drugs in water. The combination of new HCP extraction materials with modern analytical techniques, such as chromatography and mass spectrometry, has been widely used in environmental monitoring, food safety, and biochemical analyses. In this review, the characteristics and synthesis methods of HCPs are briefly introduced, and the application progress of different types of HCPs in cartridge-based solid phase extraction is described. Finally, the future outlook of HCP applications is discussed.

3.
Emerg Microbes Infect ; 12(1): 2191741, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36920800

RESUMO

Pulmonary anthrax is the most fatal clinical form of anthrax and currently available injectable vaccines do not provide adequate protection against it. Hence, next-generation vaccines that effectively induce immunity against pulmonary anthrax are urgently needed. In the present study, we prepared an attenuated and low protease activity Bacillus anthracis strain A16R-5.1 by deleting five of its extracellular protease activity-associated genes and its lef gene through the CRISPR-Cas9 genome editing system. This mutant strain was then used to formulate a lethal toxin (LeTx)-free culture supernatant extract (CSE) anthrax vaccine, of which half was protective antigen (PA). We generated liquid, powder, and powder reconstituted formulations that could be delivered by aerosolized intratracheal inoculation. All of them induced strong humoral, cellular, and mucosal immune responses. The vaccines also produced LeTx neutralizing antibodies and conferred full protection against the lethal aerosol challenges of B. anthracis Pasteur II spores in mice. Compared to the recombinant PA vaccine, the CSE anthrax vaccine with equal PA content provided superior immunoprotection against pulmonary anthrax. The preceding results suggest that the CSE anthrax vaccine developed herein is suitable and scalable for use in inhalational immunization against pulmonary anthrax.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Camundongos , Animais , Antraz/prevenção & controle , Vacinas contra Antraz/genética , Antígenos de Bactérias/genética , Pós , Bacillus anthracis/genética , Vacinas Sintéticas , Peptídeo Hidrolases , Anticorpos Antibacterianos
4.
Biomolecules ; 13(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830716

RESUMO

USA300, a dominant clone of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), is circulating globally and can cause necrotizing pneumonia with high morbidity and mortality. To further reveal the host anti-MRSA infection immune response, we established a mouse model of acute primary MRSA pneumonia challenged with aerosols of the USA300 clone. A time-course transcriptome analysis of the lungs collected at 0, 12, 24, 48 and 96 h post-infection (hpi) was conducted using RNA sequencing (RNA-seq) and multiple bioinformatic analysis methods. The change trend of histopathology and five innate immune cell (neutrophils, mononuclear cells, eosinophils, macrophages, DC cells) proportions in the lungs after infection was also examined. We observed a distinct acute pulmonary recovery process. A rapid initiation period of inflammation was present at 12 hpi, during which the IL-17 pathway dominantly mediated inflammation and immune defense. The main stages of host inflammatory response occurred at 24 and 48 hpi, and the regulation of interferon activation and macrophage polarization played an important role in the control of inflammatory balance at this stage. At 96 hpi, cellular proliferation processes associated with host repair were observed, as well as adaptive immunity and complement system responses involving C1q molecules. More importantly, the data provide new insight into and identify potential functional genes involved in the checks and balances occurring between host anti-inflammatory and proinflammatory responses. To the best of our knowledge, this is the first study to investigate transcriptional responses throughout the inflammatory recovery process in the lungs after MRSA infection. Our study uncovers valuable research targets for key regulatory mechanisms underlying the pathogenesis of MRSA lung infections, which may help to develop novel treatment strategies for MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus Resistente à Meticilina/genética , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Perfilação da Expressão Gênica , Inflamação/patologia , Células Clonais
5.
Front Cell Infect Microbiol ; 12: 833080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573776

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening community-acquired infections among healthy young individuals and is thus of concern for global dissemination. In this study, a mouse model of acute primary hvKp pneumonia was established via aerosolized intratracheal (i.t.) inoculation, laying the foundation for conducting extensive studies related to hvKp. Subsequently, a time-course transcriptional profile was created of the lungs from the mouse model at 0, 12, 24, 48 and 60 hours post-infection (hpi) using RNA Sequencing (RNA-Seq). RNA-Seq data were analyzed with the use of Mfuzz time clustering, weighted gene co-expression network analysis (WGCNA) and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse). A gradual change in the transcriptional profile of the lungs was observed that reflected expected disease progression. At 12 hpi, genes related to acute phase inflammatory response increased in expression and lipid metabolism appeared to have a pro-inflammatory effect. At 24 hpi, exacerbation of inflammation was observed and active IFN-γ suggested that signaling promoted activation and recruitment of macrophages occurred. Genes related to maintaining the structural integrity of lung tissues showed a sustained decrease in expression after infection and the decrease was especially marked at 48 hpi. TNF, IL-17, MAPK and NF-kB signaling pathways may play key roles in the immunopathogenesis mechanism at all stages of infection. Natural killer (NK) cells consistently decreased in abundance after infection, which has rarely been reported in hvKp infection and could provide a new target for treatment. Genes Saa1 and Slpi were significantly upregulated during infection. Both Saa1, which is associated with lipopolysaccharide (LPS) that elicits host inflammatory response, and Slpi, which encodes an antimicrobial protein, have not previously been reported in hvKp infections and could be important targets for subsequent studies. To t our knowledge, this paper represents the first study to investigate the pulmonary transcriptional response to hvKp infection. The results provide new insights into the molecular mechanisms underlying the pathogenesis of hvKp pulmonary infection that can contribute to the development of therapies to reduce hvKp pneumonia.


Assuntos
Infecções por Klebsiella , Pneumonia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Klebsiella pneumoniae/genética , Pulmão , Camundongos
6.
Sci Rep ; 12(1): 4745, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304534

RESUMO

Aerosol samplers are critical tools for studying indoor and outdoor aerosols. Development and evaluation of samplers is often labor-intensive and time-consuming due to the need to use monodisperse aerosols spanning a range of sizes. This study develops a rapid experimental methodology using polydisperse solid aerosols to evaluate size-resolved aerosol-to-aerosol (AtoA) and aerosol-to-hydrosol (AtoH) sampling efficiencies. Arizona Test Dust (diameter 0.5-20 µm) was generated and dispersed into an aerosol test chamber and two candidate samplers were tested. For the AtoA test, aerosols upstream and downstream of a sampler were measured using an online aerodynamic particle sizer. For the AtoH test, aerosols collected in sampling medium were mixed with a reference sample and then measured by the laser diffraction method. The experimental methodology were validated as an impressive time-saving procedure, with reasonable spatial uniformity and time stability of aerosols in the test chamber and an acceptable accuracy of absolute mass quantification of collected particles. Evaluation results showed that the AGI-30 and the BioSampler sampler had similar size-resolved sampling efficiencies and that efficiencies decreased with decreasing sampling flow rate. The combined evaluation of AtoA and AtoH efficiency provided more comprehensive performance indicators than either test alone. The experimental methodology presented here can facilitate the design and choice of aerosol sampler.


Assuntos
Poeira , Monitoramento Ambiental , Aerossóis/análise , Poeira/análise , Eficiência , Monitoramento Ambiental/métodos , Desenho de Equipamento , Tamanho da Partícula
7.
J Mol Recognit ; 32(6): e2775, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30592338

RESUMO

Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 µM and a limit of detection of 0.01 µM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.


Assuntos
Técnicas Biossensoriais/métodos , Titânio/química , Ácido Úrico/análise , Humanos , Limite de Detecção , Impressão Molecular , Nanopartículas/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Ácido Úrico/urina , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA