Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7560, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215014

RESUMO

Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.


Assuntos
Descoberta de Drogas , Piroptose , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Piroptose/efeitos dos fármacos , Feminino , Descoberta de Drogas/métodos , Animais , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico , Xantonas/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos , Inteligência Artificial , Mineração de Dados , Redes Neurais de Computação
2.
Adv Sci (Weinh) ; 11(15): e2305546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342612

RESUMO

The heterogeneity of triple-negative breast cancers (TNBC) remains challenging for various treatments. Ferroptosis, a recently identified form of cell death resulting from the unrestrained peroxidation of phospholipids, represents a potential vulnerability in TNBC. In this study, a high intensity focused ultrasound (HIFU)-driven nanomotor is developed for effective therapy of TNBC through induction of ferroptosis. Through bioinformatics analysis of typical ferroptosis-associated genes in the FUSCCTNBC dataset, gambogic acid is identified as a promising ferroptosis drug and loaded it into the nanomotor. It is found that the rapid motion of nanomotors propelled by HIFU significantly enhanced tumor accumulation and penetration. More importantly, HIFU not only actuated nanomotors to trigger effective ferroptosis of TNBC cells, but also drove nanomotors to activate ferroptosis-mediated antitumor immunity in primary and metastatic TNBC models, resulting in effective tumor regression and prevention of metastases. Overall, HIFU-driven nanomotors show great potential for ferroptosis-immunotherapy of TNBC.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Imunoterapia , Morte Celular , Biologia Computacional
3.
Adv Sci (Weinh) ; 11(5): e2303907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997186

RESUMO

Despite being a new promising tool for cancer therapy, intravenous delivery of oncolytic viruses (OVs) is greatly limited by poor tumor targeting, rapid clearance in the blood, severe organ toxicity, and cytokine release syndrome. Herein, a simple and efficient strategy of erythrocyte-leveraged oncolytic virotherapy (ELeOVt) is reported, which for the first time assembled OVs on the surface of erythrocytes with up to near 100% efficiency and allowed targeted delivery of OVs to the lung after intravenous injection to achieve excellent treatment of pulmonary metastases while greatly improving the biocompatibility of OVs as a drug. Polyethyleneimine (PEI) as a bridge to assemble OVs on erythrocytes also played an important role in promoting the transfection of OVs. It is found that ELeOVt approach significantly prolonged the circulation time of OVs and increased the OVs distribution in the lung by more than tenfold, thereby significantly improving the treatment of lung metastases while reducing organ and systemic toxicity. Taken together, these findings suggest that the ELeOVt provides a biocompatible, efficient, and widely available approach to empower OVs to combat lung metastasis.


Assuntos
Neoplasias Pulmonares , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias Pulmonares/terapia , Eritrócitos
4.
Appl Opt ; 50(21): 3865-70, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772368

RESUMO

We fabricated a single-mode planar waveguide in z-cut Nd:YVO(4) by multienergy He ion implantation in total fluence of 4.5×10(16) ions/cm(2) at room temperature and investigated optical properties of Nd:YVO(4) before and after He ion implantation by measuring transmission, confocal microluminescence, and confocal Raman spectra. Absorption bands and the photoluminescence features of the bulk Nd:YVO(4) crystal have been preserved after He ion implantation. In Raman spectra, most of the peak positions and peak widths had no obvious change before and after He ion implantation. The guiding mode and near-field image in the waveguide were measured by the prism coupling method and end-face coupling method, respectively. We investigated the damage behavior of a Nd:YVO(4) waveguide after implantation, annealing treatment by the Rutherford backscattering/channeling technique. The minimum yield of the virgin z-cut Nd:YVO(4) was 1.98%, which increased to 4.73% after He ion implantation and decreased to 3.20% after annealing at 600 K for 30 minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA