Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35271024

RESUMO

Vehicle-to-vehicle (V2V) communication has attracted increasing attention since it can improve road safety and traffic efficiency. In the underlay approach of mode 3, the V2V links need to reuse the spectrum resources preoccupied with vehicle-to-infrastructure (V2I) links, which will interfere with the V2I links. Therefore, how to allocate wireless resources flexibly and improve the throughput of the V2I links while meeting the low latency requirements of the V2V links needs to be determined. This paper proposes a V2V resource allocation framework based on deep reinforcement learning. The base station (BS) uses a double deep Q network to allocate resources intelligently. In particular, to reduce the signaling overhead for the BS to acquire channel state information (CSI) in mode 3, the BS optimizes the resource allocation strategy based on partial CSI in the framework of this article. The simulation results indicate that the proposed scheme can meet the low latency requirements of V2V links while increasing the capacity of the V2I links compared with the other methods. In addition, the proposed partial CSI design has comparable performance to complete CSI.


Assuntos
Alocação de Recursos
2.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960560

RESUMO

Accurate traffic flow prediction is essential to building a smart transportation city. Existing research mainly uses a given single-graph structure as a model, only considers local and static spatial dependencies, and ignores the impact of dynamic spatio-temporal data diversity. To fully capture the characteristics of spatio-temporal data diversity, this paper proposes a cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network (CAFMGCN) model for traffic flow prediction. First, introduce GCN to model the historical traffic data's three-time attributes (current, daily, and weekly) to extract time features. Second, consider the relationship between distance and traffic flow, constructing adjacency, connectivity, and regional similarity graphs to capture dynamic spatial topology information. To make full use of global information, a cross-attention mechanism is introduced to fuse temporal and spatial features separately to reduce prediction errors. Finally, the CAFMGCN model is evaluated, and the experimental results show that the prediction of this model is more accurate and effective than the baseline of other models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...