Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38856661

RESUMO

The development of simple and rapid analytical tools for gossypol (GSP) is important to the food industry and medical field. Here, we report a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method for the detection of GSP by using a reactive matrix 4-hydrazinoquinazoline (4-HQ). The two aldehyde groups of GSP react with the 4-HQ and therefore improve the detection sensitivity and selectivity of GSP. Moreover, GSP forms homogeneous crystals with the 4-HQ matrix, allowing the quantification of the GSP by the proposed method. With the optimized experimental conditions, GSP could be detected at concentrations as low as 0.1 µM and quantified in a wide linear range (1-500 µM). After a brief extraction with an organic solvent, the GSP contents in cottonseeds and cottonseed kernels from different provinces of China were determined successfully. The spiked recovery of GSP in cottonseed/cottonseed kernel samples was obtained as 97.88-105.80%, showing the reliability of the assay for GSP determination in real samples.

2.
Plant Sci ; 340: 111988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232820

RESUMO

In this study, we investigated the tolerance and accumulation capacity of Dendrobium denneanum Kerr (D.denneanum) by analyzing the growth and physiological changes of D.denneanum under different levels of Zn treatments, and further transcriptome sequencing of D.denneanum leaves to screen and analyze the differentially expressed genes. The results showed that Zn400 treatment (400 mg·kg-1) promoted the growth of D.denneanum while both Zn800 (800 mg·kg-1) and Zn1600 treatment (1600 mg·kg-1) caused stress to D.denneanum. Under Zn800 treatment (800 mg·kg-1), the resistance contribution of physiological indexes was the most obvious: antioxidant system, photosynthetic pigment, osmoregulation, phytochelatins, and ASA-GSH cycle (Ascorbic acid-Glutathione cycle). D.denneanum leaves stored the most Zn, followed by stems and roots. The BCF(Bioconcentration Factor) of the D.denneanum for Zn were all more than 1.0 under different Zn treatments, with the largest BCF (1.73) for Zn400. The transcriptome revealed that there were 1500 differentially expressed genes between Zn800 treatment and group CK, of which 842 genes were up-regulated and 658 genes were down-regulated. The genes such as C4H, PAL, JAZ, MYC2, PP2A, GS, and GST were significantly induced under the Zn treatments. The differentially expressed genes were associated with phenylpropane biosynthesis, phytohormone signaling, and glutathione metabolism. There were three main pathways of response to Zn stress in Dendrobium: antioxidant action, compartmentalization, and cellular chelation. This study provides new insights into the response mechanisms of D.denneanum to Zn stress and helps to evaluate the phytoremediation potential of D.denneanum in Zn-contaminated soils.


Assuntos
Dendrobium , Dendrobium/genética , Antioxidantes , Perfilação da Expressão Gênica , Glutationa , Zinco
3.
Anal Bioanal Chem ; 416(1): 313-319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37940728

RESUMO

Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.


Assuntos
Espectrometria de Mobilidade Iônica , Esteroides , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Espectrometria de Massas/métodos , Esteroides/análise
4.
Med Phys ; 44(10): 5509-5516, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28714067

RESUMO

PURPOSE: To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance (QA) measurements using flattening-filter-free beam. METHODS: A total of 10 spherical targets [volume range: (0.03 cc-2 cc)] were planned with two techniques: (a) dynamic conformal arc (DCA-10 plans) and (b) volumetric modulated arc therapy (VMAT-10 plans). All plans were generated using Varian Eclipse treatment planning system, and AcurosXB v.13 algorithm in 1.0 mm grid size. Additionally, 14 previously treated cranial and spine SRS plans were evaluated [6 DCA, 8 VMAT, volume range: (0.04 cc-119.02 cc)]. Plan modulation was quantified via two metrics: MU per prescription dose (MU/Rx) and Average Leaf Pair Opening (ALPO). QA was performed on the Varian Edge linear accelerator equipped with HDMLC. Three detectors were used: (a) PinPoint ion chamber (PTW; active volume 0.015 cc), (b) Exradin W1 PSD (Standard Imaging; active volume 0.002 cc), and (c) Gafchromic EBT3 film (Ashland). PinPoint chamber and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging); films were placed horizontally capturing the coronal plane. RESULTS: PSD, film, and PinPoint chamber measured average differences of 1.00 ± 1.54%, 1.30 ± 1.69%, and -0.66 ± 2.36%, respectively, compared to AcurosXB dose calculation. As the target volume decreased, PinPoint chamber measured lower doses (maximum -5.07% at 0.07 cc target), while PSD and film measured higher doses (2.87% and 2.54% at 0.03 cc target) than AcurosXB. Film agreed with the benchmark detector PSD by an average difference of 0.31 ± 1.20%, but suffered from larger uncertainty; PinPoint chamber underestimated dose by more than 4% for targets smaller than 0.2 cc. Taking PSD as the measurement standard, DCA plans achieved good QA results across all volumes studied, with an average of -0.07 ± 0.89%; for VMAT plans, PSD measured consistently higher dose (1.95 ± 1.36%) than AcurosXB. Correlation study revealed that plan modulation quantified by both MU/Rx and ALPO correlated significantly with QA results. CONCLUSION: Among all three detectors, PSD demonstrated superior performances in plans with small fields and heavy modulation. High consistency and low uncertainty made PSD a suitable detector for clinical routine SRS QA. PinPoint chamber should be avoided for targets smaller than 0.2 cc; film dosimetry can be utilized with careful evaluation of its uncertainty bracket. Compared to PSD measurements, AcurosXB calculation demonstrated high accuracy for nonmodulated small fields. The positive correlation between plan modulation and QA discrepancy calls for our attention for clinical SRS plans with high modulation.


Assuntos
Plásticos , Radiocirurgia/instrumentação , Contagem de Cintilação/instrumentação , Humanos , Imagens de Fantasmas , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 17(6): 379-391, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929510

RESUMO

The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source-to-surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of -1.0% ± 4.9% (max. = -11.7% for 0.5 × 0.5 cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5% ± 0.4% (max. = 3.3% for 0.5 × 1 cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2% ± 0.9% (max. = 6.0% for 1 × 1 cm2 square field). Gafchromic film (EBT3) measure-ments and MC calculations agreed with the scintillator detector measurements within 0.6% ± 1.8% and 1.2% ± 1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4% ± 1.1% (CC01), 5.8% ± 5.4% (SFD), 5.1% ± 4.8% (Edge diode), 3.5% ± 5.0% (Monte Carlo), 3.8% ± 4.7% (film), and 5.5% ± 5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their behaviors, especially for FFF beams and small, elongated fields. The scintillator detector exhibited good agreement against Gafchromic film measurements and MC simulations over the range of field sizes studied. The collimator exchange effect was found to be impor-tant at these small field sizes. Detector-specific correction factors were computed using the scintillator measurements as the benchmark.


Assuntos
Simulação por Computador , Aceleradores de Partículas/instrumentação , Fótons , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Algoritmos , Humanos , Modelos Teóricos , Método de Monte Carlo
6.
Radiat Oncol ; 11(1): 132, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716323

RESUMO

PURPOSE: The purpose of this study is to evaluate the dosimetric uncertainty associated with Gafchromic™ (EBT3) films and establish a practical and efficient film dosimetry protocol for Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT). METHOD AND MATERIALS: EBT3 films were irradiated at each of seven different dose levels between 1 and 15 Gy with open fields and standard deviations of dose maps were calculated at each color channel for evaluation. A scanner non-uniform response correction map was built by registering and comparing film doses to the reference ion chamber array-based dose map delivered with the same doses. To determine the temporal dependence of EBT3 films, the average correction factors of different dose levels as a function of time were evaluated up to 4 days after irradiation. An integrated film dosimetry protocol was developed for dose calibration, calibration curve fitting, dose mapping, and profile/gamma analysis. Patient specific quality assurance (PSQA) was performed for 83 SRS/SBRT treatment plans, and analysis of the measurements and calculations are presented here. RESULTS: The scanner response varied within 1 % for the field sizes less than 5 × 5 cm2, and up to 5 % for the field sizes of 10 × 10 cm2 for all color channels. The scanner correction method was able to remove visually evident, irregular detector responses for larger field sizes. The dose response of the film changed rapidly (~10 %) in the first two hours and became smooth plateaued afterwards, ~3 % change between 2 and 24 h. The uncertainties were approximately 1.5, 1.7 and 4.8 % over the dose range of 3~15 Gy for the red, green and blue channels. The green channel showed very high sensitivity and low uncertainty in the dose range between 10 and 15 Gy, which is suitable for SRS/SBRT commissioning and PSQA. The difference between the calculated dose and measured dose of ion chamber measurement at isocenter was -0.64 ± 2.02 for all plans, corresponding to a 95 % confidence interval of (-1.09, -0.26). The percentage of points passing the 3 %/1 mm gamma criteria in absolute dose, averaged over all tests was 95.0 ± 4.2. CONCLUSION: We have developed the EBT3 films based dosimetry protocol to obtain absolute dose values. The overall uncertainty has been established to be 1.5 % for SRS and SBRT PSQA.


Assuntos
Dosimetria Fotográfica , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia/normas , Calibragem , Relação Dose-Resposta à Radiação , Humanos , Incerteza
7.
Radiat Oncol ; 11: 98, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473367

RESUMO

BACKGROUND: This study investigates the effect of gantry speed on 4DCBCT image quality and dose for the Varian On-Board Imager®. METHODS: A thoracic 4DCBCT protocol was designed using a 125 kVp spectrum. Image quality parameters were evaluated for 4DCBCT acquisition using Catphan® phantom with real-time position management™ system for gantry speeds varying between 1.0 to 6.0°/s. Superior-inferior motion of the phantom was executed using a sinusoidal waveform with five second period. Scans were retrospectively sorted into 4 phases (CBCT-4 ph) and 10 phases (CBCT-10 ph); average 4DCBCT (CBCT-ave), using all image data from the 4DCBCT acquisitions was also evaluated. The 4DCBCT images were evaluated using the following image quality metrics: spatial resolution, contrast-to-noise ratio (CNR), and uniformity index (UI). Additionally, Hounsfield unit (HU) sensitivity compared to a baseline CBCT and percent differences and RMS errors (RMSE) of excursion were also determined. Imaging dose was evaluated using an IBA CC13 ion chamber placed within CIRS Thorax phantom using the same sinusoidal motion and image acquisition settings as mentioned above. RESULTS: Spatial resolution decreased linearly from 5.93 to 3.82 lp/cm as gantry speed increased from 1.0 to 6.0°/s. CNR decreased linearly from 4.80 to 1.82 with gantry speed increasing from 1.0 to 6.0°/s, respectively. No noteworthy variations in UI, HU sensitivity, or excursion metrics were observed with changes in gantry speed. Ion chamber dose rates measured ranged from 2.30 (lung) to 5.18 (bone) E-3 cGy/mAs. CONCLUSIONS: A quantitative analysis of the Varian OBI's 4DCBCT capabilities was explored. Changing gantry speed changes the number of projections used for reconstruction, affecting both image quality and imaging dose if x-ray tube current is held constant. From the results of this study, a gantry speed between 2 and 3°/s was optimal when considering image quality, dose, and reconstruction time. The future of 4DCBCT clinical utility relies on further investigation of image acquisition and reconstruction optimization.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Respiração
8.
Ultrason Sonochem ; 27: 374-378, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26186856

RESUMO

The effect of ultrasonic cavitation erosion on electrochemical corrosion behavior of high-velocity oxygen-fuel (HVOF) sprayed near-nanostructured WC-10Co-4Cr coating in 3.5 wt.% NaCl solution, was investigated using free corrosion potential, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in comparison with stainless steel 1Cr18Ni9Ti. The results showed that cavitation erosion strongly enhanced the cathodic current density, shifted the free corrosion potential in the anodic direction, and reduced the magnitude of impedance of the coating. The impedance of the coating decreased more slowly under cavitation conditions than that of the stainless steel 1Cr18Ni9Ti, suggesting that corrosion behavior of the coating was less affected by cavitation erosion than that of the stainless steel.

9.
J Appl Clin Med Phys ; 16(4): 125­148, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26218998

RESUMO

The purpose of this study is to characterize the dosimetric properties and accuracy of a novel treatment platform (Edge radiosurgery system) for localizing and treating patients with frameless, image-guided stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). Initial measurements of various components of the system, such as a comprehensive assessment of the dosimetric properties of the flattening filter-free (FFF) beams for both high definition (HD120) MLC and conical cone-based treatment, positioning accuracy and beam attenuation of a six degree of freedom (6DoF) couch, treatment head leakage test, and integrated end-to-end accuracy tests, have been performed. The end-to-end test of the system was performed by CT imaging a phantom and registering hidden targets on the treatment couch to determine the localization accuracy of the optical surface monitoring system (OSMS), cone-beam CT (CBCT), and MV imaging systems, as well as the radiation isocenter targeting accuracy. The deviations between the percent depth-dose curves acquired on the new linac-based system (Edge), and the previously published machine with FFF beams (TrueBeam) beyond D(max) were within 1.0% for both energies. The maximum deviation of output factors between the Edge and TrueBeam was 1.6%. The optimized dosimetric leaf gap values, which were fitted using Eclipse dose calculations and measurements based on representative spine radiosurgery plans, were 0.700 mm and 1.000 mm, respectively. For the conical cones, 6X FFF has sharper penumbra ranging from 1.2-1.8 mm (80%-20%) and 1.9-3.8 mm (90%-10%) relative to 10X FFF, which has 1.2-2.2mm and 2.3-5.1mm, respectively. The relative attenuation measurements of the couch for PA, PA (rails-in), oblique, oblique (rails-out), oblique (rails-in) were: -2.0%, -2.5%, -15.6%, -2.5%, -5.0% for 6X FFF and -1.4%, -1.5%, -12.2%, -2.5%, -5.0% for 10X FFF, respectively, with a slight decrease in attenuation versus field size. The systematic deviation between the OSMS and CBCT was -0.4 ± 0.2 mm, 0.1± 0.3mm, and 0.0 ± 0.1 mm in the vertical, longitudinal, and lateral directions. The mean values and standard deviations of the average deviation and maximum deviation of the daily Winston-Lutz tests over three months are 0.20 ± 0.03 mm and 0.66 ± 0.18 mm, respectively. Initial testing of this novel system demonstrates the technology to be highly accurate and suitable for frameless, linac-based SRS and SBRT treatment.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Anormalidades Maxilofaciais/cirurgia , Aceleradores de Partículas , Posicionamento do Paciente/instrumentação , Imagens de Fantasmas , Radiocirurgia/instrumentação , Cabeça/patologia , Humanos , Masculino , Anormalidades Maxilofaciais/patologia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
10.
J Appl Clin Med Phys ; 16(4): 163­180, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26219010

RESUMO

This study details the generation, verification, and implementation of a treatment planning system (TPS) couch top model for patient support system used in conjunction with a dedicated stereotactic linear accelerator. Couch top model was created within the TPS using CT simulation images of the kVue Calpyso-compatible couchtop (with rails). Verification measurements were compared to TPS dose prediction for different energies (6 MV FFF and 10 MV FFF) and rail configurations (rails in and rails out) using: 1) central axis point-dose measurements with pinpoint chamber in water-equivalent phantom at 42 gantry angles for various field sizes (2 × 2 cm², 4 × 4 cm², 10 × 10 cm²); and 2) Gafchromic EBT3 film parallel to beam in acrylic slab to assess changes in surface and percent depth doses in PA geometry. To assess sensitivity of delivered dose to variations in patient lateral position, measurements at central axis using the pinpoint chamber geometry were taken at lateral couch displacements of 2, 5, and 10 mm for 6 MV FFF. The maximum percent difference for point-dose measurements was 3.24% (6 MV FFF) and 2.30% (10 MV FFF). The average percent difference for point-dose measurements was less than 1.10% for all beam energies and rail geometries. The maximum percent difference between calculated and measured dose can be as large as 13.0% if no couch model is used for dose calculation. The presence of the couch structures also impacts surface dose and PDD, which was evaluated with Gafchromic film measurements. The upstream shift in the depth of dose maximum (dmax) was found to be 10.5 mm for 6 MV FFF and 5.5 mm for 10 MV FFF for 'Rails In' configuration. Transmission of the treatment beam through the couch results in an increase in surface dose (absolute percentage) of approximately 50% for both photon energies (6 MV FFF and 10MV FFF). The largest sensitivity to lateral shifts occurred at the lateral boundary of the rail structures. The mean magnitude (standard deviation) of the deviation between shifted and centered measurements over all field sizes tested was 0.61% (0.61%) for 2 mm shifts, 0.46% (0.67%) for 5 mm shifts, and 0.86% (1.46%) for 10 mm shifts.


Assuntos
Algoritmos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador/métodos , Espalhamento de Radiação , Calibragem , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X
11.
J Am Soc Mass Spectrom ; 26(6): 994-1003, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862186

RESUMO

Formation and dissociation of the interstrand i-motifs by DNA with the sequence d(X(n)C(4)Y(m)) (X and Y represent thymine, adenine, or guanine, and n, m range from 0 to 2) are studied with electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and UV spectrophotometry. The ion complexes detected in the gas phase and the melting temperatures (Tm) obtained in solution show that a non-C base residue located at 5' end favors formation of the four-stranded structures, with T > A > G for imparting stability. Comparatively, no rule is found when a non-C base is located at the 3' end. Detection of penta- and hexa-stranded ions indicates the formation of i-motifs with more than four strands. In addition, the i-motifs seen in our mass spectra are accompanied by single-, double-, and triple-stranded ions, and the trimeric ions were always less abundant during annealing and heat-induced dissociation process of the DNA strands in solution (pH = 4.5). This provides a direct evidence of a strand-by-strand formation and dissociation pathway of the interstrand i-motif and formation of the triple strands is the rate-limiting step. In contrast, the trimeric ions are abundant when the tetramolecular ions are subjected to collision-induced dissociation (CID) in the gas phase, suggesting different dissociation behaviors of the interstrand i-motif in the gas phase and in solution. Furthermore, hysteretic UV absorption melting and cooling curves reveal an irreversible dissociation and association kinetic process of the interstrand i-motif in solution.

12.
Ultrason Sonochem ; 26: 87-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25617967

RESUMO

The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products.

13.
Med Phys ; 41(10): 101902, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25281954

RESUMO

PURPOSE: The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. METHODS: The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). RESULTS: 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface motion measurement from axial and sagittal MR cines also showed δSPS (SI) was significantly greater than δSPS (LAT). The median δSPS (SI) and δSPS (LAT) was 11.0% and 9.2% (p-value = 0.008), respectively. Tumor motion trajectories from 4D-MRI matched with those from single-slice cine MRI: the mean (±SD) absolute differences in tumor motion amplitude between the two were 1.5 ± 1.6 mm, 2.1 ± 1.9 mm, and 1.1 ± 1.0 mm in the SI, ML, and AP directions from this patient study. CONCLUSIONS: Space-dependent phase shift is less problematic for sagittal acquisition than for axial acquisition. 4D-MRI using sagittal acquisition was successfully carried out in patients with hepatic tumors.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Respiração , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Movimento (Física) , Imagens de Fantasmas , Estudos Prospectivos
14.
Int J Radiat Oncol Biol Phys ; 87(1): 209-15, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23790773

RESUMO

PURPOSE: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (PNON) and adaptive plan (PADP), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between PNON and PADP for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (dT-OAR), initial internal target volume (ITV1), ITV change (ΔITV), and effective ITV diameter change (ΔdITV). RESULTS: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from -59.6% to 13.0%, with a mean (±SD) of -21.0% (±21.4%). On average of all patients, PADP resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. ΔdITV/dT-OAR was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between ΔdITV/dT-OAR and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. CONCLUSIONS: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/cirurgia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Esôfago/diagnóstico por imagem , Esôfago/efeitos da radiação , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Estudos Retrospectivos , Medula Espinal/diagnóstico por imagem , Medula Espinal/efeitos da radiação , Parede Torácica/diagnóstico por imagem , Parede Torácica/efeitos da radiação , Carga Tumoral/efeitos da radiação
15.
J Lipid Res ; 52(10): 1847-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737754

RESUMO

We evaluated dual-echo Dixon in-phase and out-of-phase (IP-OP), chemical shift imaging (CSI), and (1)H MRS (hydrogen MR spectroscopy) in estimating fat content (FC) in phantoms and in livers of mice. Phantoms were made according to the volume percentage of fat ranging from 0% to 100%. The three MR methods were performed to measure FC in phantoms and in livers of obese leptin-deficient (ob/ob), human BSCL2/seipin gene knockout (SKO), and wild-type (WT) mice. The results were compared with known FC in phantoms and to a reference standard from mice by histological semiautomatic vacuole segmentation (HIS-S) procedure and liver lipid (LL) chemical analysis. In phantoms, CSI underestimated FC from 50% to 100%, to a lesser extent than IP-OP. In vivo, liver FC in ob/ob and SKO mice measured by the three MR methods were all significantly higher than that in WT mice. Liver FC measured by IP-OP were significantly lower than that measured by CSI and MRS, with no significant difference between CSI and MRS. CSI and MRS showed a linear correlation with LL analysis and with each other. IP-OP underestimated FC, whereas CSI and MRS were more accurate for quantifying FC in both phantoms and liver. CSI and MRS have the potential to replace HIS-S and LL analysis in longitudinal studies.


Assuntos
Imagem Ecoplanar/métodos , Gorduras/análise , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Gorduras/química , Gorduras/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/química , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Hepatopatia Gordurosa não Alcoólica , Obesidade/metabolismo , Obesidade/patologia , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...