Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadl6498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478599

RESUMO

Designing a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (ZnxCu3-x) (hexahydroxytriphenylene)2 (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions. This approach for atomistic interlayer design allows for the finely control of the charge transport, band structure, and dielectric properties of the cMOF. As a result, Zn3Cu1-HHTP, with an optimal dielectric property, exhibits high-efficiency absorption in the gigahertz microwave range, achieving an ultra-strong reflection loss of -81.62 decibels. This study not only advances the understanding of the microstructure-function relationships in cMOFs but also offers a generic nanotechnology-based approach to achieving controllable interlayer spacing in MOFs for the targeted applications.

2.
Perception ; 53(4): 240-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332618

RESUMO

Embodied cognition contends that sensorimotor experiences undergird cognitive processes. Three embodied cross-domain metaphorical mappings constitute quintessential illustrations: spatial navigation and orientation underpin the conceptualization of time and emotion and gustatory sensation underlies the formulation of emotion. Threading together these strands of insights, the present research consisted of three studies explored the potential influence of spicy taste on people's metaphorical perspectives on time. The results revealed a positive correlation between spicy taste and the ego-moving metaphor for time such that individuals who enjoyed spicy taste (Study 1) and who consumed spicy (vs. salty) snack (Study 2) exhibited a predilection for the ego-moving perspective when cognizing a temporally ambiguous event. Because both spicy taste and the ego-moving metaphor are associated with anger and approach motivation, the latter two were postulated to be related to the novel taste-time relationship. Corroborative evidence for the hypothesis was found, which indicated that spicy (vs. salty) intake elicited significantly stronger anger toward and significantly greater approach-motivated perception of a rescheduled temporal event (Study 3). Taken together, the current findings demonstrate that spicy taste may play a role in people's perspectives on the movement of events in time and highlight the involved embodied interrelation between language, emotion, and cognition.


Assuntos
Metáfora , Paladar , Humanos , Percepção Gustatória , Emoções , Cognição
3.
Plants (Basel) ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256770

RESUMO

In this paper, the effect of isosteviol on the physiological metabolism of Brassica napus seedlings under salt stress is explored. Brassica napus seeds (Qinyou 2) were used as materials, and the seeds were soaked in different concentrations of isosteviol under salt stress. The fresh weight, dry weight, osmotic substance, absorption and distribution of Na+, K+, Cl-, and the content of reactive oxygen species (ROS) were measured, and these results were combined with the changes shown by Fourier transform infrared spectroscopy (FTIR). The results showed that isosteviol at an appropriate concentration could effectively increase the biomass and soluble protein content of Brassica napus seedlings and reduce the contents of proline, glycine betaine, and ROS in the seedlings. Isosteviol reduces the oxidative damage to Brassica napus seedlings caused by salt stress by regulating the production of osmotic substances and ROS. In addition, after seed soaking in isosteviol, the Na+ content in the shoots of the Brassica napus seedlings was always lower than that in the roots, while the opposite was true for the K+ content. This indicated that under salt stress the Na+ absorbed by the Brassica napus seedlings was mainly accumulated in the roots and that less Na+ was transported to the shoots, while more of the K+ absorbed by the Brassica napus seedlings was retained in the leaves. It is speculated that this may be an important mechanism for Brassica napus seedlings to relieve Na+ toxicity. The spectroscopy analysis showed that, compared with the control group (T1), salt stress increased the absorbance values of carbohydrates, proteins, lipids, nucleic acids, etc., indicating structural damage to the plasma membrane and cell wall. The spectra of the isosteviol seed soaking treatment group were nearly the same as those of the control group (T1). The correlation analysis shows that under salt stress the Brassica napus seedling tissues could absorb large amounts of Na+ and Cl- to induce oxidative stress and inhibit the growth of the plants. After the seed soaking treatment, isosteviol could significantly reduce the absorption of Na+ by the seedling tissues, increase the K+ content, and reduce the salt stress damage to the plant seedlings. Therefore, under salt stress, seed soaking with isosteviol at an appropriate concentration (10-9~10-8 M) can increase the salt resistance of Brassica napus seedlings by regulating their physiological and metabolic functions.

4.
Adv Mater ; 36(13): e2308427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109695

RESUMO

The structure engineering of metal-organic frameworks (MOFs) forms the cornerstone of their applications. Nonetheless, realizing the simultaneous versatile structure engineering of MOFs remains a significant challenge. Herein, a dynamically mediated synthesis strategy to simultaneously engineer the crystal structure, defect structure, and nanostructure of MOFs is proposed. These include amorphous Zr-ODB nanoparticles, crystalline Zr-ODB-hz (ODB = 4,4'-oxalyldibenzoate, hz = hydrazine) nanosheets, and defective d-Zr-ODB-hz nanosheets. Aberration-corrected scanning transmission electron microscopy combined with low-dose high-angle annular dark-field imaging technique vividly portrays these engineered structures. Concurrently, the introduced hydrazine moieties confer self-reduction properties to the respective MOF structures, allowing the in situ installation of catalytic Pd nanoparticles. Remarkably, in the hydrogenation of vanillin-like biomass derivatives, Pd/Zr-ODB-hz yields partially hydrogenated alcohols as the primary products, whereas Pd/d-Zr-ODB-hz exclusively produces fully hydrogenated alkanes. Density functional theory calculations, coupled with experimental evidence, uncover the catalytic selectivity switch triggered by the change in structure type. The proposed strategy of versatile structure engineering of MOFs introduces an innovative pathway for the development of high-performance MOF-based catalysts for various reactions.

5.
Chem Rev ; 123(23): 13489-13692, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37962496

RESUMO

As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.

6.
ACS Nano ; 17(13): 12510-12518, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350557

RESUMO

Metal-organic frameworks (MOFs) manifest enormous potential in promoting electromagnetic wave (EMW) absorption thanks to the tailored components, topological structure, and high porosity. Herein, rodlike conductive MOFs (cMOFs) composed of adjustable metal ions of Zn, Cu, Co, or Ni and ligands of hexahydroxytriphenylene (HHTP) are prepared to attain tunable dielectric properties for a tailored EMW absorption. Specifically, the influences of the cMOFs' composition, charge transport characteristic, topological crystalline structure, and anisotropy microstructure on dielectric and EMW absorption performance are ascertained, advancing the understanding of EMW attenuation mechanisms of MOFs. The boosted conductive and polarization losses derived from the conjugation effects and terminal groups, as well as shape anisotropy, lead to a prominent EMW absorption of the cMOFs. The Cu-HHTP confers a minimum reflection loss (RLmin) of -63.55 dB at the thickness of 2.9 mm and a maximum effective absorption bandwidth of 5.2 GHz. Moreover, Zn-HHTP showcases the absorption superiority in the S-band (2-4 GHz) with an RLmin of -62.8 dB at a thickness of 1.9 mm. This work not only hoists the mechanistic understanding of the structure-function relationships for the cMOFs but also offers guidelines for preparing functional MOF materials.

7.
Chem Soc Rev ; 50(9): 5366-5396, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33870965

RESUMO

Selective organic transformations using metal-organic frameworks (MOFs) and MOF-based heterogeneous catalysts have been an intriguing but challenging research topic in both the chemistry and materials communities. Analogous to the reaction specificity achieved in enzyme pockets, MOFs are also powerful platforms for regulating the catalytic selectivity via engineering their catalytic microenvironments, such as metal node alternation, ligand functionalization, pore decoration, topology variation and others. In this review, we provide a comprehensive introduction and discussion about the role of MOFs played in regulating and even boosting the size-, shape-, chemo-, regio- and more appealing stereo-selectivity in organic transformations. We hope that it will be instructive for researchers in this field to rationally design, conveniently prepare and elaborately functionalize MOFs or MOF-based composites for the synthesis of high value-added organic chemicals with significantly improved selectivity.

8.
Chem Asian J ; 14(9): 1535-1540, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30834685

RESUMO

Heteroatom-doped porous carbon materials have exhibited promising applications in various fields. In this work, sulfur, nitrogen co-doped carbon materials (SNCs) with abundant pore structure were prepared by pyrolysis of sulfur, nitrogen-containing porous organic polymers (POPs) mixed with nano-CaCO3 at high temperature. Among the resultant materials, SNC-Ca-850 possesses a relatively high level of doped heteroatoms and exhibits an excellent catalytic performance for the selective oxidation of benzylic C-H bonds. It is noteworthy that nano-CaCO3 increases the doped sulfur content in the synthesized carbon materials to a large extent and impacts the existence modes of sulfur. In addition, it enhances the porous structure and specific surface area of the resultant SNCs significantly. This work provides a viable strategy to promote the doping of sulfur into carbon materials during the pyrolysis process.

9.
ACS Appl Mater Interfaces ; 9(27): 22856-22863, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28627867

RESUMO

Two-dimensional imine-linked covalent organic frameworks with hydroxyl groups, TAPT-DHTA-COFHX and TAPT-DHTA-COFDMF, were respectively constructed by the condensation of 1,3,5-tris-(4-aminophenyl)triazine and 2,5-dihydroxyl-terephthalaldehyde under solvothermal and reflux conditions. Both COFs possess excellent thermal stability and a similar eclipsed stacking structure verified by XRD patterns. However, TAPT-DHTA-COFHX presented a larger surface area (2238 m2/g) and higher crystallinity than TAPT-DHTA-COFDMF. Significantly, copper ions are efficiently incorporated into the pores of these two COFs via the coordination interaction with hydroxyl groups and imine linkers. The obtained copper-containing COFs (Cu-COFHX and Cu-COFDMF) were employed in the selective oxidation of styrene to benzaldehyde. Cu-COFHX with superior surface area (1886 m2/g) and pore volume (1.11 cm3/g) exhibited excellent catalytic performance and recyclability. This strategy not only provides a convenient approach to design imine-linked 2D COFs with hydroxyl groups, but also develops their novel application for catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...