Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Cancer Cell Int ; 24(1): 294, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154013

RESUMO

BACKGROUND: Prostate cancer ranks among the six most lethal malignancies worldwide. Telomerase, a reverse transcriptase enzyme, plays a pivotal role in extending cellular telomeres and is intimately associated with cell proliferation and division. However, the interconnection between prostate cancer and telomerase-related genes (TEASEs) remains unclear. METHODS: Somatic mutations and copy number alterations of TEASEs were comprehensively analyzed. Subsequently, the transcripts of prostate cancer patients in TCGA and GEO databases were integrated to delineate new molecular subtypes. Followed by constructing a risk model containing nine characteristic genes through Lasso regression and Cox prognostic analysis among different subtypes. Various aspects including prognosis, tumor microenvironment (TME), landscape of immunity, tumor mutational burden (TMB), stem cell correlation, and median inhibitory concentration amongst different risk groups were compared. Finally, the expression, prognosis, and malignant biological behavior of ZW10 interactor (ZWINT) in vitro was explored. RESULTS: TEASEs exhibited a notably high mutation frequency. Three distinct molecular subtypes and two gene subclusters based on TEASEs were delineated, displaying significant associations with prognosis, immune function regulation, and clinical characteristics. Low-risk patients demonstrated superior prognosis and better response to immunotherapy. Conversely, high-risk patients exhibited higher TMB and stronger stem cell correlations. It was also found that the patients' sensitivity to chemotherapy agents was impacted by the risk score. Finally, ZWINT's potential as a novel diagnostic and prognostic biomarker for prostate cancer was validated. CONCLUSIONS: TEASEs play a pivotal role in modulating immune regulation and immunotherapeutic responses, thereby significantly impacting the diagnosis, prognosis, and treatment strategies for affected patients.

2.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143050

RESUMO

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Assuntos
Mitocôndrias , Mitofagia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neurônios/metabolismo , Mitocôndrias/metabolismo , Camundongos , Humanos , Fosforilação Oxidativa , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Neurogênese
3.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142135

RESUMO

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

4.
Mol Neurobiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981960

RESUMO

Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.

5.
Biochem Biophys Res Commun ; 731: 150360, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39018970

RESUMO

Exercise is known to be an effective intervention for depression. NADPH has been demonstrated to have neuroprotective effects in our previous studies. This study aimed to investigate if NADPH has antidepressant effects and can mimic the effects of exercise in a chronic unpredictable stress (CUS) rat model. CUS rats underwent an 8-week swimming exercise (30 min/d, 5d/w) or were intraperitoneally administered 4 mg/kg or 8 mg/kg NADPH. The open field test (OFT), sucrose preference test (SPT), novelty-suppressed feeding test (NSFT), and forced swimming test (FST) were used to examine the antidepressant-like behaviors of the rats. Exercise, 4 mg/kg, and 8 mg/kg NADPH similarly reduced anxiety, as demonstrated by the number of fecal pellets. Meanwhile, exercise and 8 mg/kg NADPH significantly increased locomotion activity in the OFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH effectively reversed CUS-induced anhedonia in rats in the SPT. Exercise, 4 mg/kg, and 8 mg/kg NADPH had no impact on appetite of depressed rats; however, 8 mg/kg NADPH increased the rats' exploratory activity in the NSFT. Exercise, 4 mg/kg, and 8 mg/kg NADPH significantly reduced the immobility time of CUS model rats, while exercise and 8 mg/kg NADPH postponed the early CUS-induced "immobility" in the FST. These results demonstrated that NADPH has similar antidepressant-like effects to exercise in CUS-induced depression model rats and is a potential exercise-mimicking antidepressant.


Assuntos
Antidepressivos , Depressão , Modelos Animais de Doenças , NADP , Condicionamento Físico Animal , Ratos Sprague-Dawley , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , NADP/metabolismo , Ratos , Depressão/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Natação , Doença Crônica
6.
Nano Lett ; 24(25): 7741-7747, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870320

RESUMO

The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.

7.
Redox Biol ; 73: 103176, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705094

RESUMO

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.


Assuntos
Ferroptose , NADP , Humanos , NADP/metabolismo , Animais , Aciltransferases/metabolismo , Aciltransferases/genética , Camundongos , Processamento de Proteína Pós-Traducional
8.
Theranostics ; 14(7): 2993-3013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773972

RESUMO

The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.


Assuntos
Mitocôndrias , Neoplasias , Sirtuínas , Sirtuínas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Carcinogênese/efeitos dos fármacos
9.
Lipids Health Dis ; 23(1): 157, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796440

RESUMO

AIMS: About 20-40% patients with type 2 diabetes mellitus (T2DM) had an increased risk of developing diabetic nephropathy (DN). Dipeptidyl peptidase-4 inhibitors (DPP-4i) were recommended for treatment of T2DM, while the impact of DPP-4i on renal function remained unclear. This study aimed to explore the effect of DPP-4i on renal parameter of estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) in T2DM. METHODS: A systematic search was performed across PubMed, Embase and Cochrane Library. A fixed or random-effects model was used for quantitative synthesis according to the heterogeneity, which was assessed with I2 index. Sensitivity analysis and publication bias were performed with standard methods, respectively. RESULTS: A total of 17 randomized controlled trials were identified. Administration of DPP-4i produced no significant effect on eGFR (WMD, -0.92 mL/min/1.73m2, 95% CI, -2.04 to 0.19) in diabetic condition. DPP-4i produced a favorable effect on attenuating ACR (WMD, -2.76 mg/g, 95% CI, -5.23 to -0.29) in patients with T2DM. The pooled estimate was stable based on the sensitivity test. No publication bias was observed according to Begg's and Egger's tests. CONCLUSIONS: Treatment with DPP-4i preserved the renal parameter of eGFR in diabetic condition. Available evidences suggested that administration of DPP-4i produced a favorable effect on attenuating ACR in patients with T2DM. INTERNATIONAL PROSPECTIVE REGISTER FOR SYSTEMATIC REVIEW (PROSPERO) NUMBER: CRD.42020144642.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores da Dipeptidil Peptidase IV , Taxa de Filtração Glomerular , Rim , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Taxa de Filtração Glomerular/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/fisiopatologia , Creatinina/urina , Creatinina/sangue
10.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703508

RESUMO

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Assuntos
Apoptose , Traumatismo por Reperfusão Miocárdica , Niacinamida , Estresse Oxidativo , Compostos de Piridínio , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 3 , Superóxido Dismutase , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Sirtuína 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Superóxido Dismutase/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Cardiotônicos/farmacologia , Sirtuínas
11.
Acta Pharmacol Sin ; 45(9): 1809-1820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750074

RESUMO

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.


Assuntos
Animais Recém-Nascidos , Hipocampo , Hipóxia-Isquemia Encefálica , Mitofagia , Neurônios , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Sobrevivência Celular/fisiologia , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
FEBS Open Bio ; 14(7): 1101-1115, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710658

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the major subtypes of heart failure (HF) and no effective treatments for this common disease exist to date. Cardiac fibrosis is central to the pathology of HF and a potential avenue for the treatment of HFpEF. To explore key fibrosis-related genes and pathways in the pathophysiological process of HFpEF, a mouse model of HFpEF was constructed. The relevant gene expression profiles were downloaded from the Gene Expression Omnibus database, and single-sample Gene Set Enrichment Analysis (ssGSEA) was performed targeting fibrosis-related pathways to explore differentially expressed genes (DEGs) in healthy control and HFpEF heart tissues with cross-tabulation analysis of fibrosis-related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified fibrosis-related genes. The two most significant DEGs were selected, and further validation was conducted in HFpEF mice. The results indicated that myocardial fibrosis was significantly upregulated in HFpEF mice compared to healthy controls, while the ssGSEA results revealed significant differences in the enrichment of nine fibrosis-related pathways in HFpEF myocardial tissue, with 112 out of 798 DEGs being related to fibrosis. The in vivo results demonstrated that expression levels of resistin-like molecule gamma (Relmg) and adenylate cyclase 1 (Adcy1) in the heart tissues of HFpEF mice were significantly higher and lower, respectively, compared to healthy controls. Taken together, these results suggest that Relmg and Acdy1 as well as the fibrosis process may be potential targets for HFpEF treatment.


Assuntos
Adenilil Ciclases , Fibrose , Insuficiência Cardíaca , Animais , Camundongos , Fibrose/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL
13.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38610287

RESUMO

Fringe projection profilometry (FPP), with benefits such as high precision and a large depth of field, is a popular 3D optical measurement method widely used in precision reconstruction scenarios. However, the pixel brightness at reflective edges does not satisfy the conditions of the ideal pixel-wise phase-shifting model due to the influence of scene texture and system defocus, resulting in severe phase errors. To address this problem, we theoretically analyze the non-pixel-wise phase propagation model for texture edges and propose a reprojection strategy based on scene texture modulation. The strategy first obtains the reprojection weight mask by projecting typical FPP patterns and calculating the scene texture reflection ratio, then reprojects stripe patterns modulated by the weight mask to eliminate texture edge effects, and finally fuses coarse and refined phase maps to generate an accurate phase map. We validated the proposed method on various texture scenes, including a smooth plane, depth surface, and curved surface. Experimental results show that the root mean square error (RMSE) of the phase at the texture edge decreased by 53.32%, proving the effectiveness of the reprojection strategy in eliminating depth errors at texture edges.

14.
Ecotoxicol Environ Saf ; 277: 116361, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663189

RESUMO

Soil heavy metal contamination has become a global environmental issue, which threaten soil quality, food security and human health. Symphytum officinale L. have exhibited high tolerance and restoration capacity to heavy metals (HMs) stress. However, little is known about the mechanisms of HMs in S. officinale. In this study, transcriptomic and physiological changes of S. officinale response to different HMs (Pb, Cd and Zn) were analyzed and investigated the key genes and pathways involved in HMs uptake patterns. The results showed that phenotypic effects are not significant, and antioxidant enzyme activities were all upregulated. Transcriptome analysis indicated that 1247 differential genes were up-regulated, and 1963 differential genes were down-regulated under Cd stress, while 3752 differential genes were up-regulated, and 7197 differential genes were down-regulated under Pb stress; and 527 differential genes were up-regulated; and 722 differential genes were down-regulated under Zn stress. Based on their expression, we preliminarily speculate that different HMs resistance of S. officinale may be regulated by the differential expression of key genes. These results provide a theoretical basis for determining the exact expression of genes in plants under different heavy metal stress, the processes involved molecular pathways, and how they can be efficiently utilized to improve plant tolerance to toxic metals and improve phytoremediation efficiency.


Assuntos
Metais Pesados , Poluentes do Solo , Transcriptoma , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Chumbo/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cádmio/toxicidade , Perfilação da Expressão Gênica , Biodegradação Ambiental , Zinco/toxicidade
15.
Front Immunol ; 15: 1342658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680495

RESUMO

Objectives: Inflammatory cytokines (ICs) play an important role in erectile dysfunction (ED). Previous studies have demonstrated that most ED patients have high levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). The causality between 41 ICs and ED is investigated using the Mendelian randomization (MR) approach. Methods: Single nucleotide polymorphisms (SNPs) exposure data of 41 ICs came from a genome-wide association study (GWAS) of 8293 subjects. At the same time, the FINNGEN R9 database provided the ED outcome data containing 2205 ED patients and 164104 controls. MR-Egger (ME), inverse variance weighting (IVW), and weighted median (WM) were applied to conduct the MR study and IVW was taken as the main criterion. Results: From a genetic perspective, the increase of interferon-inducible protein-10 (IP-10) level significantly increased the risk of ED (P=0.043, odds ratio (OR)=1.269, 95% confidence interval (95%CI): 1.007-1.600), while the increase of interleukin-1 receptor antagonist (IL-1RA) markedly decreased the risk of ED (P=0.037, OR=0.768, 95%CI: 0.600-0.984). Meanwhile, IP-10 (p=0.099) and IL-1RA (p=0.135) failed to demonstrate causality in reverse MR analysis. Conclusions: Changes in ICs levels will significantly affect the risk of ED, especially IP-10 as a risk component for ED and IL-1RA as a protective component for ED. In the future, we can achieve targeted treatment and prevention of ED by intervening with specific inflammatory factors.


Assuntos
Citocinas , Disfunção Erétil , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Disfunção Erétil/genética , Citocinas/genética , Predisposição Genética para Doença , Mediadores da Inflamação/metabolismo , Quimiocina CXCL10/genética
16.
Autophagy ; 20(8): 1741-1761, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686804

RESUMO

Obesity is one of the most common metabolic diseases around the world, which is distinguished by the abnormal buildup of triglycerides within adipose cells. Recent research has revealed that autophagy regulates lipid mobilization to maintain energy balance. TIGAR (Trp53 induced glycolysis regulatory phosphatase) has been identified as a glycolysis inhibitor, whether it plays a role in the metabolism of lipids is unknown. Here, we found that TIGAR transgenic (TIGAR+/+) mice exhibited increased fat mass and trended to obesity phenotype. Non-target metabolomics showed that TIGAR caused the dysregulation of the metabolism profile. The quantitative transcriptome sequencing identified an increased levels of LRRK2 and RAB7B in the adipose tissue of TIGAR+/+ mice. It was confirmed in vitro that TIGAR overexpression increased the levels of LRRK2 by inhibiting polyubiquitination degradation, thereby suppressing macroautophagy and chaperone-mediated autophagy (CMA) while increasing lipid accumulation which were reversed by the LRRK2 inhibitor DNL201. Furthermore, TIGAR drove LRRK2 to interact with RAB7B for suppressing lysosomal degradation of lipid droplets, while the increased lipid droplets in adipocytes were blocked by the RAB7B inhibitor ML282. Additionally, fat-specific TIGAR knockdown of TIGAR+/+ mice alleviated the symptoms of obesity, and adipose tissues-targeting superiority DNL201 nano-emulsion counteracted the obesity phenotype in TIGAR+/+ mice. In summary, the current results indicated that TIGAR performed a vital function in the lipid metabolism through LRRK2-mediated negative regulation of macroautophagy and CMA in adipocyte. The findings suggest that TIGAR has the potential to serve as a viable therapeutic target for treating obesity and its associated metabolic dysfunction.


Assuntos
Adipócitos , Autofagia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Obesidade , Monoéster Fosfórico Hidrolases , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Obesidade/metabolismo , Obesidade/patologia , Autofagia/fisiologia , Adipócitos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , proteínas de unión al GTP Rab7/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Ubiquitinação , Masculino , Proteínas Reguladoras de Apoptose
17.
Nanoscale ; 16(13): 6662-6668, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38487896

RESUMO

Developing high-performance bifunctional electrocatalysts towards the hydrogen evolution reaction/oxygen evolution reaction (HER/OER) holds great significance for efficient water splitting. This work presents a two-stage metal-organic thermal evaporation strategy for the fabrication of Ru-based catalysts (Ru/NF) through growing ruthenium (Ru)/ruthenium dioxide (RuO2) nanoparticles (NPs) on nickel foam (NF). The optimal Ru/NF shows remarkable performance in both the HER (26.1 mV) and the OER (235.4 mV) at 10 mA cm-2 in an alkaline medium. The superior OER performance can be attributed to the synergistic interaction between Ru and RuO2, facilitating fast alkaline water splitting. Density functional theory studies reveal that the resulting Ru/RuO2 with the (110) crystal surface reinforces the adsorption of oxygen on RuO2, while metallic Ru improves water dissociation in alkaline electrolytes. Besides, Ru/NF requires only 1.50 V at 10 mA cm-2 for overall water splitting, surpassing 20 wt% Pt/C/NF||RuO2/NF. This work demonstrates the promising potential of a thermal evaporation approach for designing stable Ru-based nanomaterials loaded onto conductive substrates for high performance overall water splitting.

18.
J Cancer Res Clin Oncol ; 150(3): 132, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492096

RESUMO

OBJECTIVES: To develop a radiomics model based on diffusion-weighted imaging (DWI) utilizing automated machine learning method to differentiate cerebral cystic metastases from brain abscesses. MATERIALS AND METHODS: A total of 186 patients with cerebral cystic metastases (n = 98) and brain abscesses (n = 88) from two clinical institutions were retrospectively included. The datasets (129 from institution A) were randomly portioned into separate 75% training and 25% internal testing sets. Radiomics features were extracted from DWI images using two subregions of the lesion (cystic core and solid wall). A thorough image preprocessing method was applied to DWI images to ensure the robustness of radiomics features before feature extraction. Then the Tree-based Pipeline Optimization Tool (TPOT) was utilized to search for the best optimized machine learning pipeline, using a fivefold cross-validation in the training set. The external test set (57 from institution B) was used to evaluate the model's performance. RESULTS: Seven distinct TPOT models were optimized to distinguish between cerebral cystic metastases and abscesses either based on different features combination or using wavelet transform. The optimal model demonstrated an AUC of 1.00, an accuracy of 0.97, sensitivity of 1.00, and specificity of 0.93 in the internal test set, based on the combination of cystic core and solid wall radiomics signature using wavelet transform. In the external test set, this model reached 1.00 AUC, 0.96 accuracy, 1.00 sensitivity, and 0.93 specificity. CONCLUSION: The DWI-based radiomics model established by TPOT exhibits a promising predictive capacity in distinguishing cerebral cystic metastases from abscesses.


Assuntos
Abscesso Encefálico , Neoplasias Supratentoriais , Humanos , Radiômica , Estudos Retrospectivos , Abscesso Encefálico/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Aprendizado de Máquina
20.
J Plant Res ; 137(4): 605-617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506958

RESUMO

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.


Assuntos
Boraginaceae , Flores , Néctar de Plantas , Polinização , Reprodução , Polinização/fisiologia , Flores/fisiologia , Animais , Abelhas/fisiologia , Reprodução/fisiologia , Néctar de Plantas/fisiologia , Boraginaceae/fisiologia , Pólen/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA