Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35805475

RESUMO

The COVID-19 epidemic has emerged as one of the biggest challenges, and the world is focused on preventing and controlling COVID-19. Although there is still insufficient understanding of how environmental conditions may impact the COVID-19 pandemic, airborne transmission is regarded as an important environmental factor that influences the spread of COVID-19. The natural ventilation potential (NVP) is critical for airborne infection control in the micro-built environment, where infectious and susceptible people share air spaces. Taking Wuhan as the research area, we evaluated the NVP in residential areas to combat COVID-19 during the outbreak. We determined four fundamental residential area layouts (point layout, parallel layout, center-around layout, and mixed layout) based on the semantic similarity model for point of interest (POI) picking. Our analyses indicated that the center-around and point layout had a higher NVP, while the mixed and parallel layouts had a lower NVP in winter and spring. Further analysis showed that the proportion of the worst NVP has been rising, while the proportion of the poor NVP remains very high in Wuhan. This study suggested the need to efficiently improve the residential area layout in Wuhan for better urban ventilation to combat COVID-19 without losing other benefits.


Assuntos
COVID-19 , Pandemias , Ambiente Construído , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA