Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-664807

RESUMO

An open-access microfluidic chip which enabled automatic cell distribution and complex multi-step operations was developed.The microfluidic chip featured a key structure in which a nanoporous membrane was sandwiched by a cell culture chamber array layer and a corresponding media reservoir array layer.The microfluidic approach took advantage of the characteristics of the nanoporous membrane.On one side, this membrane permitted the flow of air but not liquid, thus acting as a flow-stop valve to enable automatic cell distribution.On the other side, it allowed diffusion-based media exchange and thus, mimicked the endothelial layer.In synergy with a liquid transferring platform, the open-access microfluidic system enabled complex multi-step operations involving medium exchange, drug treatment, and cell viability testing.By using this microfluidic protocol, a 10 × 10 tissue arrays was constructed in 90 s, followed by schedule-dependent drug testing.Morphological and immunohistochemical assays results indicated that the resultant tumor tissue was faithful to that in vivo.Drug testing assays showed that the microfluidic tissue array promised multi-step cell assays under biomimetic microenvironment, thus providing an advantageous tool for cell research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...