Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798672

RESUMO

Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.

2.
Trends Cancer ; 7(6): 482-483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893065

RESUMO

Synovial sarcoma is a soft tissue malignancy driven by the SS18-SSX fusion oncoprotein. In Nature Medicine, Jerby-Arnon et al. present a single-cell dataset for synovial sarcoma that reveals a novel 'core oncogenic program' driven by SS18-SSX, with implications for treatment strategies based on epigenetics, cell-cycle control, and immune augmentation.


Assuntos
Sarcoma Sinovial , Carcinogênese , Epigênese Genética , Humanos , Proteínas de Fusão Oncogênica/genética , Sarcoma Sinovial/genética
3.
J Neurochem ; 146(4): 429-445, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29808476

RESUMO

The small optic lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al. 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono- or diubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, over-expression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing protein KIdney/BRAin protein. These studies provide new insight into SOL calpain's function and regulation. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Assuntos
Calpaína/metabolismo , Neurônios/metabolismo , Poliubiquitina/metabolismo , Dedos de Zinco/fisiologia , Animais , Aplysia , Núcleo Celular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios/ultraestrutura , Ligação Proteica/genética , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Estatísticas não Paramétricas , Transdução Genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA