Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403728, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023199

RESUMO

Due to the unique microstructure of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H), the optoelectronic properties of this material can be tuned over a wide range, which makes it adaptable to different solar cell applications. In this work, the authors review the material properties of nc-SiOx:H and the versatility of its applications in different types of solar cells. The review starts by introducing the growth principle of doped nc-SiOx:H layers, the effect of oxygen content on the material properties, and the relationship between optoelectronic properties and its microstructure. A theoretical analysis of charge carrier transport mechanisms in silicon heterojunction (SHJ) solar cells with wide band gap layers is then presented. Afterwards, the authors focus on the recent developments in the implementation of nc-SiOx:H and hydrogenated amorphous silicon oxide (a-SiOx:H) films for SHJ, passivating contacts, and perovskite/silicon tandem devices.

2.
ACS Appl Mater Interfaces ; 12(50): 56615-56621, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33263985

RESUMO

Parasitic absorption and limited fill factor (FF) brought in by the use of amorphous silicon layers are efficiency-limiting challenges for the silicon heterojunction (SHJ) solar cells. In this work, postdeposition phosphorus (P) catalytic doping (Cat-doping) on intrinsic amorphous silicon (a-Si:H(i)) at a low substrate temperature was carried out and a P concentration of up to 6 × 1021 cm-3 was reached. The influences of filament temperature, substrate temperature, and processing pressure on the P profiles were systemically studied by secondary-ion mass spectrometry. By replacing the a-Si:H(n+er with P Cat-doping of an a-Si:H(i) layer, the passivation quality was improved, reaching an iVOC of 741 mV, while the parasitic absorption was reduced, leading to an increase in JSC by ∼1 mA/cm2. On the other hand, the open-circuit voltage and the FF of a conventional SHJ solar cell (with the a-Si:H(n) layer) can be improved by adding a Cat-doping process on the a-Si:H(i) layer, resulting in an increase in FF by 4.7%abs and in efficiency by 1.5%abs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA