Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 340: 114306, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150420

RESUMO

Vitellogenin (Vg) is the precursor of vitellin, which is an important female-specific protein stored in oocytes as the major nutrient and energy sources for embryogenesis in oviparous animals. In this study, we performed comprehensive genome-wide analysis of Vg gene family in the prawn Macrobrachium rosenbergii, and eight Vg genes designated as MrVg1a, MrVg1b and MrVg2-7 were identified. MrVg1a clusters with the previously described MrVg1b near the end of chromosome 46 and MrVg2 is on the chromosome 42 while MrVg3-7 cluster on the chromosome 23. All the putative MrVg proteins are characterized by the presence of three conserved functional domains: LPD-N, DUF1943 and vWD. Phylogenetic analysis revealed that MrVg1a shares 93% identity with MrVg1b and groups together into a branch while MrVg2-7 group into another branch, suggesting that MrVg1a, 1b and MrVg2-7 might diversify from a common ancestral gene. All the corresponding MrVg transcripts especially for MrVg1 exhibit high expression in the female hepatopancreas at late vitellogensis stage but extremely low in the ovaries except MrVg5, indicating that hepatopancreas is the major site of MrVgs synthesis. In the male, interestingly, MrVg5 and MrVg6 are also highly expressed in the testis, suggesting their potential involvement in testicular development. Bilateral ablation of eyestalk significantly upregulate all the MrVgs mRNA in the female hepatopancreas and the MrVg1 in ovary, but have no effect on the expression of MrVg2-7 in the ovary, demonstrating that eyestalk hormones could promote the ovarian development mostly by inducing the synthesis of MrVgs in the hepatopancreas but rarely in the ovary. Our results provide new insights into the prawn MrVgs family and improve our understanding of the potential role for each member of the family in the gonadal development of M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Decápodes/metabolismo , Proteínas/metabolismo , Água Doce
2.
Int J Biol Macromol ; 239: 124326, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011757

RESUMO

Gonadotropin-releasing hormone (GnRH) plays a pivotal role in reproductive regulation in vertebrates. However, GnRH was rarely isolated and its function remains poorly characterized in invertebrates. The existence of GnRH in ecdysozoa has been controversial for a long. Here, we isolated and identified two GnRH-like peptides from brain tissues in Eriocheir sinensis. Immunolocalization showed that the presence of EsGnRH-like peptide in brain, ovary and hepatopancreas. Synthetic EsGnRH-like peptides can induce germinal vesicle breakdown (GVBD) of oocyte. Similar to vertebrates, ovarian transcriptomic analysis revealed a GnRH signaling pathway in the crab, in which most genes exhibited dramatically high expression at GVBD. RNAi knockdown of EsGnRHR suppressed the expression of most genes in the pathway. Co-transfection of the expression plasmid for EsGnRHR with reporter plasmid bearing CRE-luc or SRE-luc response element into 293T cells showed that EsGnRHR transduces its signal via cAMP and Ca2+ signaling transduction pathways. In vitro incubation of the crab oocyte with EsGnRH-like peptide confirmed the cAMP-PKA cascade and Ca2+ mobilization signaling cascade but lack of a PKC cascade. Our data present the first direct evidence of the existence of GnRH-like peptides in the crab and demonstrated its conserved role in the oocyte meiotic maturation as a primitive neurohormone.


Assuntos
Braquiúros , Hormônio Liberador de Gonadotropina , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Perfilação da Expressão Gênica , Transdução de Sinais , Braquiúros/genética
3.
Gene ; 862: 147262, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36764338

RESUMO

Rad21/Rec8 family proteins are vital for sister chromatid segregation in mitosis and homologous recombination in meiosis, but no molecular data are available in crustacean species. In this study, a germ cell-specific Rad21 named EsRad21 was identified in the crab Eriocheir sinensis. EsRad21 mRNA has an open reading frame of 2310 base pairs (bp) encoding a 769 amino acids (aa) protein. RT-PCR showed that EsRad21 mRNA was particularly expressed in testis and ovary. The RT-qPCR results further revealed that the EsRad21 mRNA exhibited similar expression pattern in gonads at various developmental stages. EsRad21 mRNA expression level was the highest in testis at early spermatogenesis stage and ovaries at previtellogenesis stage, thereafter decreased significantly at middle spermatogenesis and vitellogenesis, and finally reach the lowest level at late spermatogenesis and vitellogenesis. In situ hybridization (ISH) analysis showed that EsRad21 mRNA was exclusively expressed in germline cells, but not in gonadal somatic cells. Notably, hybridized signal was detected on chromosomes of metaphase spermatocytes. EsRad21 is thus an underlying helpful indicator of the early phases of germ cell development. RNAi knockdown of EsRad21 downregulated the expression of other meiosis-related genes like Smc5-Smc6 and SPO11 and resulted in high mortality of individuals after 24 h post injection of EsRad21 dsRNA. Taken together, our results showed a potential role for EsRad21 in early meiosis of oocytes and spermatocytes in E. sinensis. This is the first report on the molecular characterization of the Rad21 transcript in a crustacean species.


Assuntos
Braquiúros , Espermatócitos , Feminino , Masculino , Animais , Espermatócitos/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , RNA Mensageiro/genética , Meiose , Braquiúros/genética
4.
Mar Biotechnol (NY) ; 24(3): 588-598, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384611

RESUMO

Largemouth bass (Micropterus salmoides) is an economically important fish. It can spawn many times during a breeding season, and there are no obvious morphological characteristics to distinguish male and female juvenile fish. So far, little is known about the genes regulating their sexual development in this species. Here, we performed RNA sequencing (RNA-Seq) analysis of the testis, ovary, and somatic tissue to identify sex-related genes in the largemouth bass. A total of 51,672 unigenes were obtained via the transcriptome analysis, and 5900 differential expression genes (DEGs), including 3028 up-regulated and 2872 down-regulated DEGs, were obtained in the somatic tissue, testis, and ovary. DEGs were retrieved by making comparisons: somatic tissue vs testis (1733-up and 1382-down), testis vs ovary (841-up and 807-down), and ovary vs somatic tissue (454-up and 683-down). Finally, functional annotation identified 22 key sex-related DEGs, including 13 testis-biased DEGs (dmrt1, cyp11b1, sox9, spata4, spata22, spata17, fshr, fem-1a, wt1, daz1, amh, vasa, and piwi1) and 9 ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, bmp15, fem-1b, fig. la, and piwi2). This result was further confirmed by the tissue expression detection via RT-PCR and RT-qPCR. Protein-protein interacting (PPI) network analysis revealed that the testis-specific dmrt1 interacts directly with the testis-biased DEGs (cyp11b1 and spata4) and the ovary-biased DEGs (foxl2, gdf9, zp3, sox3, cyp19a, and bmp15), suggesting that the dmrt1 as a sex-determining gene can play a dual role through inducing the testis-biased DEGs and inhibiting the ovary-biased DEGs during the testicular development. Our present results provide useful molecular data for a better understanding of sexual development in the largemouth bass.


Assuntos
Bass , Animais , Bass/genética , Feminino , Perfilação da Expressão Gênica/métodos , Gônadas , Masculino , Esteroide 11-beta-Hidroxilase/genética , Transcriptoma
5.
Artigo em Inglês | MEDLINE | ID: mdl-34999221

RESUMO

Vasa gene encodes a protein member of DEAD-box superfamily of ATP-dependent RNA helicases, which plays a key role in germline development in metazoans. In present study, we identified a new germline-specific marker Mrvasa in the prawn Macrobrachium rosenbergii, whose genomic DNA sequence consists of 14 exons and 13 introns. A 2516 bp of full-length Mrvasa cDNA encodes a protein of 603 amino acids. It contains nine conserved motifs, a zinc-finger motif, and RGG repeats. RT-PCR indicated that Mrvasa mRNA was specifically expressed in gonads. QPCR analysis further revealed that the expression of Mrvasa mRNA is much higher in testis than in ovary. In testis, the relative expression level of Mrvasa mRNA in late developing stage is significantly higher than that in early-middle developing stage. During ovarian development, no significant difference in expression was found. In situ hybridization demonstrated that Mrvasa mRNA was localized in germline cells including spermatogonia, spermatocytes, and spermatozoa in testes, and previtellogenic and vitellogenic oocytes in ovary. We then isolated the Mrvasa promoter and determined the transcription core region of this promoter. This is the first report on identification of vasa core promoter in crustaceans. Our results will provide a useful germline-specific marker Mrvasa for tracing germline cell formation and development in M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Sequência de Aminoácidos , Animais , Feminino , Água Doce , Masculino , Palaemonidae/genética , Palaemonidae/metabolismo , Espermatogônias
6.
Cell Tissue Res ; 386(3): 559-569, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599688

RESUMO

Germ plasm is a special cytoplasmic component containing special RNAs and proteins, and is located in specific regions of oocytes and embryos. Only the blastomeres inheriting the germ plasm can develop into primordial germ cells (PGCs). By using Vasa mRNA as a germline marker, we previously demonstrated that germline specification followed the preformation mode in the prawn Macrobrachium nipponense. In this study, we raised the Vasa antibody to identify germ plasm in the oocyte and trace the origin and migration of PGCs. In previtellogenic oocytes, Vasa protein was detected in the perinuclear region, in which electron-dense granules associated with numerous mitochondria were mostly visualized under a transmission electron microscope. In mature oocytes, immunosignal was localized to a large granule under the plasma membrane. During early embryogenesis, the granule was inherited by a single blastomere from 1-cell to 16-cell stages, and thereafter was segregated into two daughter blastomeres at the 32-cell stage. In gastrula, the Vasa-positive cells were large with typical PGC characteristics, containing a big round nucleus and a prominent nucleolus. The immunosignal was localized to the perinuclear region again. In the zoea stage, the Vasa-positive cells migrated toward the genital ridge and clustered in the dorsomedial region close to the yolk portion. Accordingly, we concluded that the prawn PGCs could be specified from the 16-cell stage by inheriting the germplasm. To our knowledge, this is the first report on the identification of the prawn germ plasm and PGCs. The continuous expression of Vasa protein throughout oogenesis and embryogenesis suggests that Vasa protein could be an important factor in germ plasm that functions in early germ cell specification.


Assuntos
Grânulos de Ribonucleoproteínas de Células Germinativas/metabolismo , Células Germinativas/metabolismo , Animais , Palaemonidae
7.
Mol Reprod Dev ; 88(3): 217-227, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655621

RESUMO

MicroRNA (miRNA) is a posttranscriptional downregulator that plays a vital role in a wide variety of biological processes. In this study, we constructed five ovarian and testicular small RNA libraries using two somatic libraries as reference controls for the identification of sex-biased miRNAs and gonadal differentially expressed miRNAs (DEMs) of the Chinese mitten crab, Eriocheir sinensis. A total of 535 known and 243 novel miRNAs were identified, including 312 sex-biased miRNAs and 402 gonadal DEMs. KEGG pathway analysis showed that DEM target genes were statistically enriched in MAPK, Wnt, and GnRH signaling pathway, and so on. A number of the sex-biased miRNAs target genes associated with sex determination/differentiation, such as IAG, Dsx, Dmrt1, and Fem1, while others target the genes related to gonadal development, such as P450s, Wnt, Ef1, and Tra-2c. Dual-luciferase reporter assay in vitro further confirmed that miR-34 and let-7b can downregulate IAG expression, miR-9-5p, let-7d, let-7b, and miR-8915 can downregulate Dsx. Taken together, these data strongly suggest a potential role for the sex-biased miRNAs in sex determination/differentiation and gonadal development in the crab.


Assuntos
Braquiúros/genética , Regulação da Expressão Gênica , Gônadas/metabolismo , MicroRNAs/genética , Transcriptoma , Animais , Braquiúros/metabolismo , Feminino , Perfilação da Expressão Gênica , Gônadas/crescimento & desenvolvimento , Masculino , MicroRNAs/metabolismo , Caracteres Sexuais , Transdução de Sinais/genética
8.
Front Endocrinol (Lausanne) ; 12: 802768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975771

RESUMO

Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the ß-PDH isoforms and were designated as Es-RPCH and Es-ß-PDH, respectively. Es-RPCH and Es-ß-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-ß-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-ß-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-ß-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-ß-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-ß-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-ß-PDH on the oocyte meiotic maturation in E. sinensis.


Assuntos
Braquiúros/fisiologia , Meiose/fisiologia , Oligopeptídeos/fisiologia , Oócitos/fisiologia , Peptídeos/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Química Encefálica , China , DNA Complementar/análise , Feminino , Expressão Gênica , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oócitos/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Peptídeos/genética , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/farmacologia , RNA Mensageiro/análise , Vitelogênese
9.
Dev Genes Evol ; 231(1-2): 11-19, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244643

RESUMO

Germ cell-specific genes play an important role in establishing the reproductive system in sexual organisms and have been used as valuable markers for studying gametogenesis and sex differentiation. Previously, we isolated a vasa transcript as a germ cell marker to trace the origin and migration of germ cells in the oriental river prawn Macrobrachium nipponense. Here, we identified a new germ cell-specific marker MnTdrd RNA and assessed its temporal and spatial expression during oogenesis and embryogenesis. MnTdrd transcripts were expressed in high abundance in unfertilized eggs and embryos at cleavage stage and then dropped significantly during late embryogenesis, suggesting that MnTdrd mRNA is maternally inherited. In situ hybridization of ovarian tissue showed that MnTdrd mRNA was initially present in the cytoplasm of previtellogenic oocyte and localized to the perinuclear region as the accumulation of yolk in vitellogenic oocyte. Whole-mount in situ hybridization of embryos showed that MnTdrd-positive signals were only localized in one blastomere until 16-cell stage. In the blastula, there were approximately 16 MnTdrd-positive blastomeres. During embryonized-zoea stage, the MnTdrd-positive cells aggregated as a cluster and migrated to the genital rudiment which would develop into primordial germ cells (PGCs). The localized expression pattern of MnTdrd transcripts resembled that of the previously identified germ cell marker vasa, supporting the preformation mode of germ cell specification. Therefore, we concluded that MnTdrd, together with vasa, is a component of the germ plasm and might have critical roles in germ cell formation and differentiation in the prawn. Thus, MnTdrd can be used as a novel germ cell marker to trace the origin and migration of germ cells.


Assuntos
Linhagem da Célula , Células Germinativas/metabolismo , Palaemonidae/genética , Domínio Tudor , Animais , Blastômeros/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Palaemonidae/citologia , Palaemonidae/crescimento & desenvolvimento
10.
PLoS One ; 15(10): e0240308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035258

RESUMO

During recent years, China has become a hotspot for the domestication of mandarin fish, and this is of great commercial value. Although the food preference of domesticated mandarin fish has been studied, little is known about genes regulating their growth. We raised hybrid mandarin fish on artificial feed for 3 months, the results showed that the survival rate of hybrid mandarin fish was 60.00%. Their total length and body weight were 18.34 ±0.43 cm and 100.44 ±4.87 g. The absolute length and weight gain rates were 0.14 cm/d and 1.08 g/d, respectively. Finally, RNA sequencing (RNA-Seq) was performed to identify potential genes and pathways activated in response to growth performance. The transcriptome analysis generated 68, 197 transcripts and 45,871 unigenes. Among them, 1025 genes were up-regulated and 593 genes were down-regulated between the fast- and slow-growth fish. Finally, we obtained 32 differentially expressed genes, which were mainly related to fatty acid biosynthesis (e.g. FASN and ACACB), collecting duct acid secretion (e.g. ATP6E and KCC4), cell cycle (e.g. CDC20 and CCNB), and the insulin-like growth factor (IGF) system (IGFBP1). These pathways might be related to the growth of hybrid mandarin fish. In addition, more potential single nucleotide polymorphisms (SNPs) were detected in the fast-growth fish than in the slow-growth fish. The results suggest that the interaction of metabolism and abundant alleles might determine the growth of hybrid mandarin fish after food conversion.


Assuntos
Peixes/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Ração Animal , Animais , Peso Corporal , China , Proteínas de Peixes/genética , Pesqueiros , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
11.
Gene ; 758: 144955, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32683076

RESUMO

Cyclin B functions as a regulatory protein through association with its catalytic partner Cdc2 kinase forming M-phase promoting factor (MPF), which plays a central role in the meiotic maturation of oocyte. To gain insight into the molecular events, we here cloned a cyclin B cDNA from the ovary of the prawn Macrobrachium rosenbergii and compared its spatial-temporal expression patterns during oocyte maturation with those of crab Eriocheir sinensis. The prawn cyclin B cDNA encodes a 398 amino acid protein with predicted molecular weight of 45.16 kDa. Immunodetection of cyclin B protein by Western blot showed that a target band of approximately 53 kDa protein in the prawn ovaries at both late vitellogenesis (lVt) and germinal vesicle breakdown (GVBD) stages, whereas a 41 kDa band was present in the crab ovaries. Cyclin B protein expression changes indicating that the newly synthesis of cyclin B proteins could be required for GVBD in both prawn and crab. Immunohistochemical analysis revealed that both the prawn and crab cyclin B proteins, were localized in the ooplasm of previtellogenic oocytes, then relocated into germinal vesicle at vitellogenesis stage and localized on meiotic spindle at M phase. These similar behaviors suggested that the prawn and the crab cyclin B proteins associated with Cdc2 kinase have conserved roles in inducing GVBD and regulating the formation of meiotic spindle. The similar expression patterns of the cyclin B proteins during oocyte maturation implicated that the molecular mechanisms for MPF activation could be identical between the prawn and the crab.


Assuntos
Braquiúros/embriologia , Ciclina B/metabolismo , Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Palaemonidae/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteína Quinase CDC2/metabolismo , Clonagem Molecular , Ciclina B/genética , Feminino , Regulação da Expressão Gênica/genética , Oogênese/genética , Ovário/metabolismo , RNA Mensageiro/genética , Fuso Acromático/metabolismo , Vitelogênese/fisiologia
12.
Gene ; 754: 144891, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32535048

RESUMO

Characterized by ankyrin repeat motifs, the feminization-1 (fem-1) gene plays an essential role in sex determination/differentiation in Caenorhabditis elegans. However, there are only a few reports on fem-1 in crustaceans. In this study, a fem-1 gene (Mrfem-1) was first isolated from the giant freshwater prawn Macrobrachium rosenbergii. The full-length cDNA of Mrfem-1 was 2607 bp long, containing an open reading frame encoding 615 amino acids, and presenting eight ankyrin repeats. The full-length cDNA has been submitted to GenBank with the accession no. MT160093. According to the RT-PCR results, Mrfem-1 was exclusively expressed in the ovary. The expression level of Mrfem-1 had increased with ovarian maturation and reached the highest peak at vitellogenic stage. In situ hybridization results showed that positive signals were concentrated in the cytoplasm of previtellogenic stage, and scattered in the cytoplasm and follicular cells at vitellogenic stage, suggesting that Mrfem-1 might be associated with ovarian maturation. Moreover, two effective siRNAs targeting Mrfem-1 were found and their effectiveness verified in vitro. These results on Mrfem-1 will help us to better understand the fem family and provide a new resource for subsequent investigations of siRNA-mediated regulation on ovarian development in M. rosenbergii.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Palaemonidae/metabolismo , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Feminino , Especificidade de Órgãos , Palaemonidae/genética , Filogenia
13.
Anim Reprod Sci ; 208: 106131, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31405476

RESUMO

Gonadal development usually involves alternative splicing of sex-related genes. Vasa, a highly conserved ATP-dependent RNA helicase present mainly in germ cells, has an important function in gonadal development. As an important sex-related gene, recent evidence indicates that different splice variants of vasa exist in many species. In this study, there was identification of two types of vasa splice variants in the Chinese mitten crab Eriocheir sinensis, termed Esvasa-l and Esvasa-s, respectively. Furthermore, splice variants of Esvasa-s were sub-divided into Esvasa-s1, Esvasa-s2, Esvasa-s3, Esvasa-s4, and Esvasa-s5, based on differing numbers of TGG repeats. Results from genomic structure analyses indicated that these forms are alternatively spliced transcripts from a single vasa gene. Results from tissue distribution assessments indicate the vasa splice variants were exclusively expressed in the gonads of male and female adult crabs. In situ hybridization results indicate Esvasa mRNA was mainly present in the cytoplasm of previtellogenic oocytes. As oocyte size increased, relative abundance of Esvasa mRNA decreased and became distributed near the cellular membrane. The Esvasa mRNA was not detectable in mature oocytes. In testis, Esvasa mRNA was detected in spermatids and spermatozoa, but not in spermatogonia and spermatocytes. Notably, results from qPCR analysis of Esvasa-l and Esvasa-s indicate there are different relative proportions during gametogenesis, implying that splice variants of the Esvasa gene may have different biological functions during crab gonadal development.


Assuntos
Processamento Alternativo , Braquiúros/genética , RNA Helicases DEAD-box/metabolismo , Gônadas/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , RNA Mensageiro/genética , Maturidade Sexual
14.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965614

RESUMO

Luteinizing hormone (LH), a pituitary gonadotropin, coupled with LH receptor (LHR) is essential for the regulation of the gonadal maturation in vertebrates. Although LH homolog has been detected by immunocytochemical analysis, and its possible role in ovarian maturation was revealed in decapod crustacean, so far there is no molecular evidence for the existence of LHR. In this study, we cloned a novel LHR homolog (named EsLHR) from the Chinese mitten crab Eriocheir sinensis. The complete sequence of the EsLHR cDNA was 2775bp, encoding a protein of 924 amino acids, sharing 71% amino acids identity with the ant Zootermopsis nevadensis LHR. EsLHR expression was found to be high in the ovary, while low in testis, gill, brain, and heart, and no expression in the thoracic ganglion, eye stalk, muscle, and hepatopancreas. Quantitative PCR revealed that the expression level of EsLHR mRNA was significantly higher in the ovaries in previtellogenic (Pvt), late vitellogenic (Lvt), and germinal vesicle breakdown (GVBD) stages than that in the vitellogenic (Mvt) and early vitellogenic (Evt) stages (P < 0.05), and, the highest and the lowest expression were in Lvt, and Evt, respectively. The strong signal was mainly localized in the ooplasm of Pvt oocyte as detected by in situ hybridization. The crab GnRH homolog can significantly induce the expression of EsLHR mRNA at 36 hours post injection in vivo (P < 0.01), suggesting that EsLHR may be involved in regulating ovarian development through GnRH signaling pathway in the mitten crab.


Assuntos
Braquiúros/metabolismo , Receptores do LH/metabolismo , Animais , Braquiúros/embriologia , DNA Complementar/metabolismo , Feminino , Masculino , Ovário/embriologia , Ovário/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Receptores do LH/genética , Testículo/embriologia , Testículo/metabolismo
15.
Sci Rep ; 9(1): 2406, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787336

RESUMO

As post-transcriptional regulators, microRNAs (miRNAs) play an important role in growth and reproductive processes. So far, there is limited information regarding crustacean miRNAs. To explore the potential role of miRNAs in the gonadal development of the prawn Macrobrachium rosenbergii, we constructed seven small RNA libraries from ovarian and testicular tissues at various stages using somatic tissue as the control. A total of 1,954 known and 129 novel miRNAs were retrieved. By comparing differentially expressed miRNAs (DEMs) between testes and ovaries, forty-one miRNAs were identified with sex-biased expression patterns, including 17 ovary-biased and 24 testis-biased patterns. Furthermore, the putative target genes of the sex-biased miRNAs, such as cyclin L1, mitogen-activated protein kinase 7 (MAPK 7), heat shock protein (HSP), and zinc finger protein, were significantly enriched in many reproduction-related pathways including the Gonadotropin-releasing hormone (GnRH) pathway, glycolysis, gluconeogenesis pathway, ovarian steroidogenesis, estrogen signaling pathway, MAPK pathway, Wnt pathway, and insulin signaling pathway, implicating potential regulatory roles of miRNAs in reproduction. These data aid in the further investigation of the mechanism of gonadal development and reproductive regulation mediated by miRNA in M. rosenbergii.


Assuntos
Gônadas/crescimento & desenvolvimento , MicroRNAs/genética , Palaemonidae/genética , Transcriptoma/genética , Animais , Feminino , Biologia de Ecossistemas de Água Doce , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/genética , Sequenciamento de Nucleotídeos em Larga Escala , MAP Quinase Quinase Quinases/genética , Masculino , MicroRNAs/classificação , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Palaemonidae/crescimento & desenvolvimento , Reprodução/genética , Testículo/crescimento & desenvolvimento
16.
Mar Biotechnol (NY) ; 21(2): 206-216, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632018

RESUMO

Knowledge on sex determination has proven valuable for commercial production of the prawn Macrobrachium rosenbergii due to sex dimorphism of the male and female individuals. Previous studies indicated that prawn sex is determined by a ZW-ZZ chromosomal system, but no genomic information is available for the sex chromosome. Herein, we constructed a genomic bacterial artificial chromosome (BAC) library and identified the ZW-derived BAC clones for initial analysis of the sex chromosomal DNA sequence. The arrayed BAC library contains 200,448 clones with average insert size of 115.4 kb, corresponding to ∼ 4× coverage of the estimated 5.38 Gb genome. Based on a short female-specific marker, a Z- and a W-fragment were retrieved with the genomic walking method. Screening the BAC library using a ZW-specific marker as probe resulted in 12 positive clones. From these, a Z-derived (P331M17) and a W-derived (P122G2) BAC clones were randomly selected and sequenced by PacBio method. We report the construction of a large insert, deep-coverage, and high-quality BAC library for M. rosenbergii that provides a useful resource for positional cloning of target genes, genomic organization, and comparative genomics analysis. Our study not only confirmed the ZW/ZZ system but also discovered sex-linked genes on ZW chromosomes for the first time, contributing to a comprehensive understanding of the genomic structure of sex chromosomes in M. rosenbergii.


Assuntos
Cromossomos Artificiais Bacterianos , Palaemonidae/genética , Cromossomos Sexuais/genética , Animais , Feminino , Biblioteca Genômica , Masculino , Análise de Sequência de DNA , Processos de Determinação Sexual
17.
Gene ; 665: 111-118, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29730424

RESUMO

As an essential mediator in the Gonadotropin-releasing hormone (GnRH) signaling pathway, GnRH receptor (GnRHR) coupled to GnRH, plays an important role in activating the downstream pathway after stimulating a series of cascades to regulate reproduction. To detect the existence of GnRHR and potential GnRH signaling pathway, we cloned and characterized GnRHR in the Chinese mitten crab, Eriocheir sinensis (named EsGnRHR). The full-length EsGnRHR cDNA is 2038 bp in length, including an open reading frame (ORF) of 1566 bp, a 57 bp 5'-untranslated region (5'-UTR) and a 415 bp 3'-UTR. Prediction of transmembrane domains in protein sequence revealed that the EsGnRHR protein contained seven hydrophobic transmembrane regions (TMs). Reverse transcription PCR revealed that EsGnRHR was mainly expressed in the thoracic nerve group and ovary, and weakly distributed in the testis and brain. In situ hybridization further demonstrated that EsGnRHR mRNA was localized at the protocerebrum and deutocerebrum. In the ovary and testis, the hybridization signal was dominantly at the earlier developmental stages. The signal was mainly localized in the cytoplasm cell in the ovary, and in the epithelium cell in the testis. During the different stages of gonadal development, EsGnRHR displayed increasing trends in both female and male when analyzed by quantitative real-time PCR, suggesting that EsGnRHR was involved in controlling gonadal development. Our study provides important information for further research on the molecular mechanisms underlying crab development.


Assuntos
Proteínas de Artrópodes , Braquiúros , Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Receptores LHRH , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/genética , Braquiúros/genética , Braquiúros/metabolismo , Feminino , Masculino , Ovário/metabolismo , Receptores LHRH/biossíntese , Receptores LHRH/genética , Testículo/metabolismo
18.
Sci Rep ; 7: 39826, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045132

RESUMO

The Chinese mitten crab Eriocheir sinensis is the most economically important cultivated crab species in China, and its genome has a high number of chromosomes (2n = 146). To obtain sufficient markers for construction of a dense genetic map for this species, we employed the recently developed specific-locus amplified fragment sequencing (SLAF-seq) method for large-scale SNPs screening and genotyping in a F1 full-sib family of 149 individuals. SLAF-seq generated 127,677 polymorphic SNP markers, of which 20,803 valid markers were assigned into five segregation types and were used together with previous SSR markers for linkage map construction. The final integrated genetic map included 17,680 SNP and 629 SSR markers on the 73 linkage groups (LG), and spanned 14,894.9 cM with an average marker interval of 0.81 cM. QTL mapping localized three significant growth-related QTL to a 1.2 cM region in LG53 as well as 146 sex-linked markers in LG48. Genome-wide QTL-association analysis further identified four growth-related QTL genes named LNX2, PAK2, FMRFamide and octopamine receptors. These genes are involved in a variety of different signaling pathways including cell proliferation and growth. The map and SNP markers described here will be a valuable resource for the E. sinensis genome project and selective breeding programs.


Assuntos
Braquiúros/genética , Ligação Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais
19.
Sci Rep ; 6: 32139, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561408

RESUMO

SRY-related HMG box (Sox) genes are characterized by the presence of a DNA-binding HMG domain and involved in a diverse range of developmental processes. In this study, we identified a novel Sox gene, designated as EsSoxB2-1, from the Chinese mitten crab Eriocheir sinensis. The EsSoxB2-1 encodes a protein of 259 amino acids, sharing the highest identity with the beetle Tribolium castaneum SOX21b. Unlike insect Sox21b, however, EsSoxB2-1 is intronless and exhibits a gonad-specific expression pattern at both mRNA and protein level. Two core promoters in 5' flanking region were demonstrated to be essential for inducing transcriptional regulatory activity. The transcription of EsSoxB2-1 mRNA begins in spermatogonia stage, while the translation of EsSOXB2-1 protein initiates at spermiogenesis stage. Interestingly, EsSOXB2-1 protein was exclusively localized in the nucleus of spermatid and spermatozoa even at the end of acrosome reaction, and was bound to the uncondensed chromatin in nucleoplasm of mature spermatozoa. Knockdown of EsSoxB2-1 by RNAi leads to abnormal transformation of the nucleus during spermiogenesis. Together, these findings demonstrated the requirement of EsSoxB2-1 for the spermatozoa nucleus maturation and also suggested that EsSoxB2-1 would be delivered into fertilized eggs along with chromatins as a paternal transcription factor for regulating early embryonic development.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição SOXB2/metabolismo , Maturação do Esperma/fisiologia , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Animais , Proteínas de Artrópodes/genética , Braquiúros/genética , Núcleo Celular/genética , Masculino , Fatores de Transcrição SOXB2/genética , Espermatozoides/citologia
20.
Gen Comp Endocrinol ; 229: 112-8, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26979275

RESUMO

Insulin-like androgenic gland hormone gene (IAG) is a sex regulator specifically expressed in male crustaceans, controlling the male sexual differentiation, spermatogenesis and reproductive strategy. Our previous study reported the cloning and characterization of the prawn Macrobrachium nipponense IAG (MnIAG). In this study, we further identified a 2214-bp MnIAG 5'-flanking region, and analyzed its transcription factor binding sites and transcriptional activity. The results showed that there were two potential promoter core sequences, three TATA boxes and one CAAT box existing in the MnIAG 5'-flanking region as well as many potential transcription factor binding sites, such as SRY, Sox-5, GATA-1, etc. Notably, the transcriptional activity was weak in this region, and a negative regulatory region was found in -604 to -231bp. In addition, we constructed M. nipponense yeast libraries and identified proteins interacting with the MnIAG protein by yeast two hybridization assay. The yeast two-hybrid screening yielded ten positive clones, of which five were annotated by NCBI database, namely heat shock protein 21, NADH dehydrogenase, zinc finger protein, beta-N-acetylglucosaminidase and a hypothetical protein. The identification of MnIAG putative regulatory region and proteins that interact with IAG will facilitate our understanding of the regulatory role of MnIAG and provide a foundation for deep insight into the prawn sex differentiation mechanism and signaling transduction pathways.


Assuntos
Insulinas/genética , Palaemonidae/metabolismo , Técnicas do Sistema de Duplo-Híbrido/estatística & dados numéricos , Androgênios/metabolismo , Animais , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...