Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25181-25193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698676

RESUMO

Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.


Assuntos
Hidrogéis , Hidrogéis/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Animais , Tecnologia sem Fio , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Álcool de Polivinil/química , Suínos , Smartphone , Pele/química , Carboximetilcelulose Sódica/química
2.
Angew Chem Int Ed Engl ; : e202406879, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757209

RESUMO

Efficient production of value-added chemicals with high selectivity from CO2 electroreduction at industrial-level current density is highly demanded, yet remains a big challenge. In a recent issue of Angewandte Chemie, Han and colleagues have elegantly increased the Faradaic efficiency (FE) of multi-carbon (C2+) products to over 70% at amperes level (1.4 A cm-2) by engineering the active sites for the key reactions involved in the CO2 electroreduction. In this study, the highly dispersed Pd atoms have two unique functions: active sites for water dissociation and to induce the electron rearrangement of the surrounding Cu atoms to form new active sites for CO conversion, while the Cu far from Pd are the active sites for efficient CO2 conversion to CO, the synergistic functions of these three active sites result in high FE and yields of C2+ products at industrial-level current density. This research is a remarkable step forward in the methodology for developing efficient and durable catalysts for CO2 electroreduction and beyond.

3.
ACS Nano ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758185

RESUMO

Defect engineering and nitrogen doping being effective strategies for modulating the surface chemical state of the carbon matrix have been widely explored to promote the catalytic activity in the territory of electrochemical energy storage and conversion devices. However, the controllable synthesis of carbon material with high-density specific defects and high nitrogen doping is still full of challenges. Here, we first synthesize one-dimensional necklace-like nitrogen-doped carbon nanochains (N-CNCs) with abundant defects on carbon fiber paper (CFP) by chemical vapor deposition (CVD) method. The resultant nanostructures are a bunch of interconnected carbon spheres with a hollow structure at the internode and present the complete one-dimensional nanochain configuration. Specifically, the N-CNCs with a corrugated surface possesses high content of sp3 defects (31.2%) and nitrogen (23.6 at %). Combining finite element analysis and experimental results, it reveals that the robust shear field generated by etching gas releasing from thermal decomposition of melamine in situ modulates the CVD process via changing the size and force environment of the metal catalyst droplets for formation of N-CNCs. Benefiting from the high ratio of sp3/sp2 and nitrogen doped on the surface, the N-CNCs@CFP displays a superior electrocatalytic performance for CO2RR, delivering CO Faradaic efficiency of 95.9% and a current density of 23.2 mA cm-2 at -0.86 V vs RHE. This work provides promising synthesis strategy and some inspirations for construction of ultradense and specific defects coupling with nitrogen doping sites into carbon materials to achieve high-efficiency electrocatalysis applications.

4.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564637

RESUMO

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

5.
Adv Sci (Weinh) ; : e2402340, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666424

RESUMO

Prussian blue analogs (PBAs) are considered as one of the most potential electrode materials in capacitive deionization (CDI) due to their unique 3D framework structure. However, their practical applications suffer from low desalination capacity and poor cyclic stability. Here, an entropy engineering strategy is proposed that incorporates high-entropy (HE) concept into PBAs to address the unfavorable multistage phase transitions during CDI desalination. By introducing five or more metals, which share N coordination site, high-entropy hexacyanoferrate (HE-HCF) is constructed, thereby increasing the configurational entropy of the system to above 1.5R and placing it into the high-entropy category. As a result, the developed HE-HCF demonstrates remarkable cycling performance, with a capacity retention rate of over 97% after undergoing 350 ultralong-life cycles of adsorption/desorption. Additionally, it exhibits a high desalination capacity of 77.24 mg g-1 at 1.2 V. Structural characterization and theoretical calculation reveal that high configurational entropy not only helps to restrain phase transition and strengthen structural stability, but also optimizes Na+ ions diffusion path and energy barrier, accelerates reaction kinetics and thus improves performance. This research introduces a new approach for designing electrodes with high performance, low cost, and long-lasting durability for capacitive deionization applications.

6.
ACS Nano ; 18(18): 11804-11812, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650374

RESUMO

Nuclear power plays a pivotal role in the global energy supply. The adsorption-based extraction of uranium from seawater is crucial for the rapid advancement of nuclear power. The phosphorus nitride imide (PN) nanotubes were synthesized in this study using a solvothermal method, resulting in chemically stable cross-linked tubular hollow structures that draw inspiration from the intricate snowflake fractal pattern. Detailed characterization showed that these nanotubes possess a uniformly distributed five-coordinated nanopocket, which exhibited great selectivity and efficiency in binding uranium. PN nanotubes captured 97.34% uranium from the low U-spiked natural seawater (∼355 µg L-1) and showed a high adsorption capacity (435.58 mg g-1), along with a distribution coefficient, KdU > 8.71 × 107 mL g-1. In addition, PN nanotubes showed a high adsorption capacity of 7.01 mg g-1 in natural seawater. The facile and scalable production of PN nanotubes presented in this study holds implications for advancing their large-scale implementation in the selective extraction of uranium from seawater.

7.
ACS Appl Mater Interfaces ; 16(10): 12916-12923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436244

RESUMO

Carbon materials with hierarchical porous structures hold great potential for redox electrolyte-enhanced supercapacitors. However, restricted by the intrinsic inert and nonpolar characteristics of carbon, the energy barrier of anchoring redox electrolytes on the pore walls is relatively high. As such, the redox process at the interface less occurs, and the rate of mass transfer is impaired, further leading to a poor electrochemical performance. Here, a ferricyanide anion-philic interface made of in situ inserted boron species into carbon rings is constructed for enhanced charge storage in supercapacitors. Profiting from the unique component-driven effects, the polar anchoring sites on the pore wall can be built to grasp the charged redox ferricyanide anion from the bulk electrolyte and promote the redox process; the dynamics process is fastened correspondingly. Especially, the boron atoms in BC2O and BCO2 units with higher positive natural bond orbital values in the carbon skeleton are pinpointed as intrinsic active sites to bind the negatively charged nitrogen atoms in the ferricyanide anion via electrostatic interaction, confirmed by density functional theoretical calculations. This will suppress the shuttle and diffusion effects of the ferricyanide anion from the surface of the electrode to the bulk electrolyte. Finally, the well-designed PC-3 with high content of BC2O and BCO2 units can reach 1099 F g-1 at 2 mV s-1, which is a more than 2-fold increase over boron-free units of carbon (428 F g-1). The work offers a novel version for designing high-performance carbon materials with unique yet reaction species-philic effects.

8.
Small ; : e2309286, 2024 Mar 07.
Artigo em Catalão | MEDLINE | ID: mdl-38453682

RESUMO

As one of the key components of supercapacitors, electrolyte is intensively investigated to promote the fast development of the energy supply system under extremely cold conditions. However, high freezing point and sluggish ion transport kinetics for routine electrolytes hinder the application of supercapacitors at low temperatures. Resultantly, the liquid electrolyte should be oriented to reduce the freezing point, accompanied by other superior characteristics, such as large ionic conductivity, low viscosity and outstanding chemical stability. In this review, the intrinsically physical parameters and microscopic structure of low-temperature electrolytes are discussed thoroughly, then the previously reported strategies that are used to address the associated issues are summarized subsequently from the aspects of aqueous and non-aqueous electrolytes (organic electrolyte and ionic liquid electrolyte). In addition, some advanced spectroscopy techniques and theoretical simulation to better decouple the solvation structure of electrolytes and reveal the link between the key physical parameters and microscopic structure are briefly presented. Finally, the further improvement direction is put forward to provide a reference and guidance for the follow-up research.

9.
Small ; : e2306410, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456764

RESUMO

Electrooxidation of biomass into fine chemicals coupled with energy-saving hydrogen production for a zero-carbon economy holds great promise. Advanced anode catalysts determine the cell voltage and electrocatalytic efficiency greatly, further the rational design and optimization of their active site coordination remains a challenge. Herein, a phosphorus-oxygen terminals-rich species (Ni2 P-O-300) via an anion-assisted pyrolysis strategy is reported to induce strong electronic coupling and high valence state of active nickel sites over nickel phosphide. This ultimately facilitates the rapid yet in-situ formation of high-valence nickel with a high reaction activity under electrochemical conditions, and exhibits a low potential of 1.33 V vs. RHE at 10 mA cm-2 , exceeding most of reported transition metal-based catalysts. Advanced spectroscopy, theoretical calculations, and experiments reveal that the functional P-O species can induce the favorable local bonding configurations for electronic coupling, promoting the electron transfer from Ni to P and the adsorption of benzyl alcohol (BA). Finally, the hydrogen production efficiency and kinetic constant of BA electrooxidation by Ni2 P-O-300 are increased by 9- and 2.8- fold compared with the phosphorus-oxygen terminals-deficient catalysts (Ni2 P-O-500). This provides an anion-assisted pyrolysis strategy to modulate the electronic environment of the Ni site, enabling a guideline for Ni-based energy/catalysis systems.

10.
Nanoscale Adv ; 6(6): 1643-1647, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482033

RESUMO

The controlled conformational changes of planar graphene nanosheets are of great importance to the realization of their practical applications. Despite substantial effort in the area, the controlled folding of two-dimensional (2D) graphene sheets into one-dimensional (1D) structures still remains a significant challenge. Here, for the first time, we report an ice crystal guided folding strategy to fabricate 1D folded graphene nanobelts (FGBs), where the formation and growth of ice crystals in a confined space function to guide the folding of 2D graphene oxide (GO) nanosheets into 1D nanobelts (i.e. folded graphene oxide belts, FGOBs), which were subsequently converted to FGBs after annealing. Thin aqueous GO containing films were obtained by blowing air through a GO dispersion in the presence of a surfactant, polyoxypropylenediamine (D400), resulting in a foam containing uniform air bubbles. Subsequent shock cooling of the foam using liquid nitrogen resulted in the facile fabrication of FGOBs. This technique provides a general approach to encapsulate catalytic nanomaterials such as Fe3O4 nanorods, TiO2 and Co3O4 nanoparticles into the folded graphene structure for practical applications such as Li-ion batteries.

11.
Adv Mater ; : e2314077, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390785

RESUMO

Conventional H2 -O2 fuel cells suffer from the low output voltage, insufficient durability, and high-cost catalysts (e.g., noble metals). Herein, this work reports a conceptually new coupled flow fuel cell (CF-FC) by coupling asymmetric electrolytes for acidic oxygen reduction reaction and alkaline hydrogen oxidation reaction. By introducing an electrochemical neutralization energy, the newly-developed CF-FCs possess a significantly increased theoretical open-circuit voltage. Specifically, a CF-FC based on a typical transition metal single-atom Fe-N-C cathode catalyst demonstrates a high electricity output up to 1.81 V and durability with an ultrahigh retention of 91% over 110 h, far superior to the conventional fuel cells (usually, < 1.0 V, < 50% retention over 20 h). The output performance can even be significantly enhanced easily by connecting multiple CF-FCs into the parallel, series, or combined parallel-series connections at a fractional cost of that for the conventional H2 -O2 fuel cells, showing great potential for large-scale practical applications. Thus, this study provides a platform to transform conventional fuel cell technology through the rational design and development of advanced energy conversion and storage devices by coupling different electrocatalytic reactions.

12.
J Am Chem Soc ; 146(10): 6409-6421, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412558

RESUMO

Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.

13.
Small ; : e2310645, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389177

RESUMO

With the increasing attention to energy and environmental issues, the high value-added utilization of biomass and pitch to functional carbon materials has become an important topic in science and technology. In this work, the soft-hard heterostructure porous carbon (NRP-HPC) is prepared by bio-template method, in which biomass and pitch are used as hard carbon and soft carbon precursors, respectively. The prepared NRP-HPC-4 shows high specific surface area (2293 m2  g-1 ), suitable pore size distribution, good conductivity (0.25 Ω cm-1 ), and strong wettability. The synergistic effect of soft carbon and hard carbon ensures the composite material exhibiting excellent electrochemical performance for high mass loading (12.0 mg cm-2 ) aqueous supercapacitor, i.e., high specific capacitance (304.69 F g-1 at 0.1 A g-1 ), high area capacitance (3.67 F cm-2 at 0.1 A g-1 ), high volumetric specific capacitance (202.74 F cm-3 at 0.1 A g-1 ), low open-circuit voltage attenuation rate (21.04 mV h-1 ), good voltage retention (79.12%), and excellent cyclic stability (92.04% capacitance retention and 100% coulombic efficiency after 20 000 cycles). The composite technology of soft carbon and hard carbon not only ensures the prepared porous carbon electrode materials with enhanced electrochemical performance, but also realizes the high value-added coupling utilization of biomass and pitch.

14.
ACS Appl Mater Interfaces ; 16(2): 2825-2835, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176096

RESUMO

Understanding the interaction mechanisms between the surface of carbon-based materials and water is of great significance for the development of water-based energy storage and energy conversion devices. Herein, a self-supporting electric generator is demonstrated based on water adsorption on the surface of the carbon foam (CF) that works with various water resources, including deionized (DI) water, tap water, wastewater, and seawater. It is revealed that the dissociation of oxygen-containing groups on the surface of CF after water molecule adsorption leads to a reduction of the surface potential of the CF. Through surface modulation techniques such as reduction and oxidation, a balance has been uncovered between the oxygen content and conductivity for the high-performance CFs. The generator can generate an open-circuit voltage of approximately 0.6 V in natural seawater with a power density of up to 0.77 mW g-1. A high voltage of more than 2 V can be achieved easily by assembling components connected in series to drive electronic devices, such as a light-emitting diode (LED). This work demonstrates a simple and low-cost method for electricity harvesting, offering an additional option for self-powered devices.

15.
Nanomicro Lett ; 16(1): 89, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227269

RESUMO

Renewable energy driven N2 electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production. However, relevant out-lab research is still in its infancy. Herein, a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies, Sn@Ti2CTX/Ti2SnC-V, was synthesized by controlled etching Sn@Ti2SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction. Due to the synergistic effect of MXene/MAX heterostructure, the existence of Sn vacancies and the highly dispersed Sn active sites, the obtained Sn@Ti2CTX/Ti2SnC-V exhibits an optimal NH3 yield of 28.4 µg h-1 mgcat-1 with an excellent FE of 15.57% at - 0.4 V versus reversible hydrogen electrode in 0.1 M Na2SO4, as well as an ultra-long durability. Noticeably, this catalyst represents a satisfactory NH3 yield rate of 10.53 µg h-1 mg-1 in the home-made simulation device, where commercial electrochemical photovoltaic cell was employed as power source, air and ultrapure water as feed stock. The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis. This work is of significance for large-scale green ammonia production.

16.
Small ; 20(2): e2305508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670540

RESUMO

Single-atom catalysts (SACs) with specific N-coordinated configurations immobilized on the carbon substrates have recently been verified to effectively alleviate the shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur (Li─S) batteries. Herein, a versatile molten salt (KCl/ZnCl2 )-mediated pyrolysis strategy is demonstrated to fabricate Zn SACs composed of well-defined Zn-N4 sites embedded into porous carbon sheets with rich pyridine-N defects (Zn─N/CS). The electrochemical kinetic analysis and theoretical calculations reveal the critical roles of Zn-N4 active sites and surrounding pyridine-N defects in enhancing adsorption toward LiPS intermediates and catalyzing their liquid-solid conversion. It is confirmed by reducing the overpotential of the rate-determining step of Li2 S2 to Li2 S and the energy barrier for Li2 S decomposition, thus the Zn─N/CS guarantees fast redox kinetics between LiPSs and Li2 S products. As a proof of concept demonstration, the assembled Li─S batteries with the Zn─N/CS-based sulfur cathode deliver a high specific capacity of 1132 mAh g-1 at 0.1 C and remarkable capacity retention of 72.2% over 800 cycles at 2 C. Furthermore, a considerable areal capacity of 6.14 mAh cm-2 at 0.2 C can still be released with a high sulfur loading of 7.0 mg cm-2 , highlighting the practical applications of the as-obtained Zn─N/CS cathode in Li─S batteries.

17.
Small ; 20(11): e2307349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105349

RESUMO

Co electroreduction of carbon dioxide and nitrate to synthesize urea provides an alternative strategy to high energy-consumption traditional methods. However, the complexity of the reaction mechanism and the high energy barrier of nitrate reduction result in a diminished production of urea. Herein, a convenient electrodeposition technique to prepare the FeOOH with low spin state iron that increases the yield rate of urea efficiently is employed. According to soft X-ray Absorption Spectroscopy and theoretical calculations, the unique configuration of low spin state iron as electron acceptors can effectively induce electron pair transfer from the occupied σ orbitals of intermediate * NO to empty d orbitals of iron. This σ→d donation mechanism leads to a reduction in the energy barrier associated with the rate-determining step (* NOOH→* NO + * OH), hence augmenting the urea generation. The low spin state iron presents a high urea yield rate of 512 µg h-1  cm-2 , representing approximately two times compared to the medium spin state iron. The key intermediates (* NH2 and * CO) in the formation of C─N bond are detected with in situ Fourier transform infrared spectroscopy. The coupling of * NH2 and * CO contributes to the formation of * CONH2 , which subsequently endures multi-step proton-coupled electron transfer to generate urea.

18.
J Colloid Interface Sci ; 658: 506-517, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128194

RESUMO

The lack of cathode materials with satisfactory Zn2+ storage capability substantially hinders the realization of high-performance aqueous zinc-ion hybrid capacitors (ZHCs). Herein, we propose a facile KMnO4 template-assisted KOH activation strategy to prepare a novel oxygen-enriched hierarchically porous carbon (HPC-1-4). This strategy efficiently converts coal tar pitch (CTP) into a well-tuned carbon material with a large specific surface area of 3019 m2 g-1 and a high oxygen content of 9.20 at%, which is conducive to providing rich active sites, rapid charge transport, and appreciable pseudocapacitance for Zn-ion storage. Thus, the as-fabricated HPC-1-4-based aqueous ZHC exhibits prominent performance, including a high gravimetric capacity (206.7 mAh g-1 at 0.25 A g-1), a remarkable energy density (153.4 Wh kg-1 at 184.2 W kg-1), and an impressive power output (15240 W kg-1 at 63.5 Wh kg-1). In-depth ex-situ characterizations indicate that the excellent electrochemical properties of ZHCs are due to the synergistic effect of the Zn2+ adsorption mechanism and reversible chemisorption. In addition, the assembled quasi-solid-state device demonstrates excellent electrochemical stability of up to 100% capacity retention over 50000 cycles, accompanied with a desirable energy density of 115.6 Wh kg-1. The facile preparation method of converting CTP into carbonaceous functional materials has advanced the development of efficient and eco-friendly energy storage technologies.

19.
iScience ; 26(12): 108470, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077143

RESUMO

Sodium-ion batteries (SIBs) with abundant resource and high safety are attracting intensive interest from both research and industry communities in meeting the ever-increasing energy demands. Despite the rapid advance of SIBs, it is difficult yet necessary to enhance the cycling and rate performance at anode due to the sluggish kinetics of "fat" Na+. This review provides an overview of two-dimensional (2D) nanomaterials with a short ion diffusion pathway and a superior active sites exposure from the perspectives of synthesis, material chemistry, and structure engineering. We present the design principle of ideal carbon materials in SIBs. Moreover, we discuss the structure and chemistry regulations of different 2D materials to promote the efficient ion mass transfer and storage according to the different mechanisms of alloying, conversion, and insertion. Finally, we propose the remaining challenges and the possible solutions, in hope of guiding the future development of this booming field.

20.
Nat Commun ; 14(1): 8146, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38065975

RESUMO

The broad employment of clean hydrogen through water electrolysis is restricted by large voltage requirement and energy consumption because of the sluggish anodic oxygen evolution reaction. Here we demonstrate a novel alternative oxidation reaction of green electrosynthesis of valuable 3,3'-diamino-4,4'-azofurazan energetic materials and coupled with hydrogen production. Such a strategy could greatly decrease the hazard from the traditional synthetic condition of 3,3'-diamino-4,4'-azofurazan and achieve low-cell-voltage hydrogen production on WS2/Pt single-atom/nanoparticle catalyst. The assembled two-electrode electrolyzer could reach 10 and 100 mA cm-2 with ultralow cell voltages of 1.26 and 1.55 V and electricity consumption of only 3.01 and 3.70 kWh per m3 of H2 in contrast of the conventional water electrolysis (~5 kWh per m3). Density functional theory calculations combine with experimental design decipher the synergistic effect in WS2/Pt for promoting Volmer-Tafel kinetic rate during alkaline hydrogen evolution reaction, while the oxidative-coupling of starting materials driven by free radical could be the underlying mechanism during the synthesis of 3,3'-diamino-4,4'-azofurazan. This work provides a promising avenue for the concurrent electrosynthesis of energetic materials and low-energy-consumption hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...